Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Hum Brain Mapp. 2023 Aug 15;44(12):4426-4438. doi: 10.1002/hbm.26399. Epub 2023 Jun 19.
Parkinson's disease (PD) diagnosis based on magnetic resonance imaging (MRI) is still challenging clinically. Quantitative susceptibility maps (QSM) can potentially provide underlying pathophysiological information by detecting the iron distribution in deep gray matter (DGM) nuclei. We hypothesized that deep learning (DL) could be used to automatically segment all DGM nuclei and use relevant features for a better differentiation between PD and healthy controls (HC). In this study, we proposed a DL-based pipeline for automatic PD diagnosis based on QSM and T1-weighted (T1W) images. This consists of (1) a convolutional neural network model integrated with multiple attention mechanisms which simultaneously segments caudate nucleus, globus pallidus, putamen, red nucleus, and substantia nigra from QSM and T1W images, and (2) an SE-ResNeXt50 model with an anatomical attention mechanism, which uses QSM data and the segmented nuclei to distinguish PD from HC. The mean dice values for segmentation of the five DGM nuclei are all >0.83 in the internal testing cohort, suggesting that the model could segment brain nuclei accurately. The proposed PD diagnosis model achieved area under the the receiver operating characteristic curve (AUCs) of 0.901 and 0.845 on independent internal and external testing cohorts, respectively. Gradient-weighted class activation mapping (Grad-CAM) heatmaps were used to identify contributing nuclei for PD diagnosis on patient level. In conclusion, the proposed approach can potentially be used as an automatic, explainable pipeline for PD diagnosis in a clinical setting.
基于磁共振成像(MRI)的帕金森病(PD)诊断在临床上仍然具有挑战性。定量磁化率图(QSM)可以通过检测深部灰质(DGM)核中铁的分布,提供潜在的病理生理学信息。我们假设深度学习(DL)可用于自动分割所有 DGM 核,并使用相关特征更好地区分 PD 和健康对照组(HC)。在这项研究中,我们提出了一种基于 QSM 和 T1 加权(T1W)图像的自动 PD 诊断的深度学习管道。它包括(1)一个集成了多种注意力机制的卷积神经网络模型,可同时从 QSM 和 T1W 图像中分割尾状核、苍白球、壳核、红核和黑质;(2)一个具有解剖注意力机制的 SE-ResNeXt50 模型,它使用 QSM 数据和分割的核来区分 PD 和 HC。在内部测试队列中,五个 DGM 核的平均骰子值均>0.83,表明该模型可以准确地分割脑核。所提出的 PD 诊断模型在独立的内部和外部测试队列上的接收者操作特征曲线(AUCs)分别达到了 0.901 和 0.845。梯度加权类激活映射(Grad-CAM)热图用于在患者水平上确定有助于 PD 诊断的核。总之,该方法有可能成为临床中自动、可解释的 PD 诊断的一种方法。