Suppr超能文献

在感觉运动系统中获得控制。

Gain control in the sensorimotor system.

作者信息

Azim Eiman, Seki Kazuhiko

机构信息

Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.

Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.

出版信息

Curr Opin Physiol. 2019 Apr;8:177-187. doi: 10.1016/j.cophys.2019.03.005. Epub 2019 Mar 22.

Abstract

Coordinated movement depends on constant interaction between neural circuits that produce motor output and those that report sensory consequences. Fundamental to this process are mechanisms for controlling the influence that sensory signals have on motor pathways - for example, reducing feedback gains when they are disruptive and increasing gains when advantageous. Sensory gain control comes in many forms and serves diverse purposes - in some cases sensory input is attenuated to maintain movement stability and filter out irrelevant or self-generated signals, or enhanced to facilitate salient signals for improved movement execution and adaptation. The ubiquitous presence of sensory gain control across species at multiple levels of the nervous system reflects the importance of tuning the impact that feedback information has on behavioral output.

摘要

协调运动依赖于产生运动输出的神经回路与报告感觉结果的神经回路之间的持续相互作用。这一过程的基础是控制感觉信号对运动通路影响的机制——例如,当感觉信号具有干扰性时降低反馈增益,而在有利时增加增益。感觉增益控制有多种形式,服务于不同目的——在某些情况下,感觉输入会被衰减以维持运动稳定性并滤除无关或自身产生的信号,或者被增强以促进显著信号,从而改善运动执行和适应性。感觉增益控制在神经系统多个层面上在物种间普遍存在,这反映了调整反馈信息对行为输出影响的重要性。

相似文献

1
Gain control in the sensorimotor system.
Curr Opin Physiol. 2019 Apr;8:177-187. doi: 10.1016/j.cophys.2019.03.005. Epub 2019 Mar 22.
2
Rapid visuomotor feedback gains are tuned to the task dynamics.
J Neurophysiol. 2017 Nov 1;118(5):2711-2726. doi: 10.1152/jn.00748.2016. Epub 2017 Aug 23.
3
Sensorimotor integration in the whisker somatosensory brain stem trigeminal loop.
J Neurophysiol. 2019 Nov 1;122(5):2061-2075. doi: 10.1152/jn.00116.2019. Epub 2019 Sep 18.
4
Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
J Neurophysiol. 2007 Jul;98(1):54-62. doi: 10.1152/jn.00266.2007. Epub 2007 May 16.
7
Corticomuscular coherence reflects somatosensory feedback gains during motor adaptation.
Neurosci Res. 2018 Jun;131:10-18. doi: 10.1016/j.neures.2017.09.004. Epub 2017 Oct 10.
9
The problem of redundancy in movement control: the adaptive model theory approach.
Psychol Res. 1993;55(2):99-106. doi: 10.1007/BF00419640.
10
Frequency control of motor patterning by negative sensory feedback.
J Neurosci. 2007 Aug 29;27(35):9319-28. doi: 10.1523/JNEUROSCI.0907-07.2007.

引用本文的文献

1
A circuit that integrates drive state and social contact to gate mating.
Nature. 2025 Sep 3. doi: 10.1038/s41586-025-09327-x.
2
Neuromuscular fatigue reduces force responsiveness when controlling leg external forces.
Physiol Rep. 2025 Aug;13(16):e70498. doi: 10.14814/phy2.70498.
3
4
Is nerve-directed stretching effective for improving of ankle joint flexibility and tissue stiffness in older men?
J Clin Biochem Nutr. 2025 May;76(3):233-238. doi: 10.3164/jcbn.24-238. Epub 2025 Mar 4.
5
Divergent neural circuits for proprioceptive and exteroceptive sensing of the Drosophila leg.
Nat Commun. 2025 May 2;16(1):4105. doi: 10.1038/s41467-025-59302-3.
6
A neural implementation model of feedback-based motor learning.
Nat Commun. 2025 Feb 20;16(1):1805. doi: 10.1038/s41467-024-54738-5.
7
Future spinal reflex is embedded in primary motor cortex output.
Sci Adv. 2024 Dec 20;10(51):eadq4194. doi: 10.1126/sciadv.adq4194. Epub 2024 Dec 18.
8
Goal-directed action preparation in humans entails a mixture of corticospinal neural computations.
bioRxiv. 2025 Feb 7:2024.07.08.602530. doi: 10.1101/2024.07.08.602530.
9
Divergent neural circuits for proprioceptive and exteroceptive sensing of the leg.
bioRxiv. 2024 Dec 7:2024.04.23.590808. doi: 10.1101/2024.04.23.590808.

本文引用的文献

1
Properties of predictive gain modulation in a dragonfly visual neuron.
J Exp Biol. 2019 Sep 6;222(Pt 17):jeb207316. doi: 10.1242/jeb.207316.
2
Spinal stretch reflexes support efficient hand control.
Nat Neurosci. 2019 Apr;22(4):529-533. doi: 10.1038/s41593-019-0336-0. Epub 2019 Feb 11.
3
Corollary discharge in precerebellar nuclei of sleeping infant rats.
Elife. 2018 Dec 5;7:e38213. doi: 10.7554/eLife.38213.
4
Closed-Loop Control of Active Sensing Movements Regulates Sensory Slip.
Curr Biol. 2018 Dec 17;28(24):4029-4036.e4. doi: 10.1016/j.cub.2018.11.002. Epub 2018 Nov 29.
5
Motor primitives in space and time via targeted gain modulation in cortical networks.
Nat Neurosci. 2018 Dec;21(12):1774-1783. doi: 10.1038/s41593-018-0276-0. Epub 2018 Nov 26.
6
Spinal plasticity with motor imagery practice.
J Physiol. 2019 Feb;597(3):921-934. doi: 10.1113/JP276694. Epub 2018 Dec 5.
7
Feedforward and Feedback Control Share an Internal Model of the Arm's Dynamics.
J Neurosci. 2018 Dec 5;38(49):10505-10514. doi: 10.1523/JNEUROSCI.1709-18.2018. Epub 2018 Oct 24.
8
GABAergic modulation of olfactomotor transmission in lampreys.
PLoS Biol. 2018 Oct 4;16(10):e2005512. doi: 10.1371/journal.pbio.2005512. eCollection 2018 Oct.
9
Cortical modulation of sensory flow during active touch in the rat whisker system.
Nat Commun. 2018 Sep 25;9(1):3907. doi: 10.1038/s41467-018-06200-6.
10
A cortical filter that learns to suppress the acoustic consequences of movement.
Nature. 2018 Sep;561(7723):391-395. doi: 10.1038/s41586-018-0520-5. Epub 2018 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验