State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China.
Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC, 3800, Australia.
Int J Comput Assist Radiol Surg. 2024 Apr;19(4):625-633. doi: 10.1007/s11548-023-03043-5. Epub 2023 Dec 23.
Early diagnosis of lung nodules is important for the treatment of lung cancer patients, existing capsule network-based assisted diagnostic models for lung nodule classification have shown promising prospects in terms of interpretability. However, these models lack the ability to draw features robustly at shallow networks, which in turn limits the performance of the models. Therefore, we propose a semantic fidelity capsule encoding and interpretable (SFCEI)-assisted decision model for lung nodule multi-class classification.
First, we propose multilevel receptive field feature encoding block to capture multi-scale features of lung nodules of different sizes. Second, we embed multilevel receptive field feature encoding blocks in the residual code-and-decode attention layer to extract fine-grained context features. Integrating multi-scale features and contextual features to form semantic fidelity lung nodule attribute capsule representations, which consequently enhances the performance of the model.
We implemented comprehensive experiments on the dataset (LIDC-IDRI) to validate the superiority of the model. The stratified fivefold cross-validation results show that the accuracy (94.17%) of our method exceeds existing advanced approaches in the multi-class classification of malignancy scores for lung nodules.
The experiments confirm that the methodology proposed can effectively capture the multi-scale features and contextual features of lung nodules. It enhances the capability of shallow structure drawing features in capsule networks, which in turn improves the classification performance of malignancy scores. The interpretable model can support the physicians' confidence in clinical decision-making.
早期诊断肺结节对于肺癌患者的治疗非常重要,现有的基于胶囊网络的辅助诊断模型在肺结节分类的可解释性方面显示出了很好的前景。然而,这些模型缺乏在浅层网络中稳健地提取特征的能力,这反过来又限制了模型的性能。因此,我们提出了一种用于肺结节多分类的语义保真胶囊编码和可解释(SFCEI)辅助决策模型。
首先,我们提出了多层次感受野特征编码块,以捕获不同大小的肺结节的多尺度特征。其次,我们将多层次感受野特征编码块嵌入到残差编解码注意力层中,以提取细粒度的上下文特征。将多尺度特征和上下文特征集成起来,形成语义保真的肺结节属性胶囊表示,从而提高了模型的性能。
我们在数据集(LIDC-IDRI)上进行了全面的实验,验证了模型的优越性。分层五折交叉验证的结果表明,我们的方法在肺结节恶性评分的多类分类中的准确率(94.17%)超过了现有的先进方法。
实验证实,所提出的方法可以有效地捕捉肺结节的多尺度特征和上下文特征。它增强了胶囊网络中浅层结构提取特征的能力,从而提高了恶性评分的分类性能。可解释模型可以支持医生在临床决策中的信心。