Suppr超能文献

使用流感抗原微阵列检测血清抗体针对不同病毒亚型的广度。

Use of an Influenza Antigen Microarray to Measure the Breadth of Serum Antibodies Across Virus Subtypes.

作者信息

Khan Saahir, Jain Aarti, Taghavian Omid, Nakajima Rie, Jasinskas Algis, Supnet Medalyn, Felgner Jiin, Davies Jenny, de Assis Rafael Ramiro, Jan Sharon, Obiero Joshua, Strahsburger Erwin, Pone Egest J, Liang Li, Davies D Huw, Felgner Philip L

机构信息

Division of Infectious Diseases, Department of Medicine, University of California Irvine Health.

Vaccine Research and Development Center, Department of Physiology, University of California Irvine.

出版信息

J Vis Exp. 2019 Jul 26(149). doi: 10.3791/59973.

Abstract

The influenza virus remains a significant cause of mortality worldwide due to the limited effectiveness of currently available vaccines. A key challenge to the development of universal influenza vaccines is high antigenic diversity resulting from antigenic drift. Overcoming this challenge requires novel research tools to measure the breadth of serum antibodies directed against many virus strains across different antigenic subtypes. Here, we present a protocol for analyzing the breadth of serum antibodies against diverse influenza virus strains using a protein microarray of influenza antigens. This influenza antigen microarray is constructed by printing purified hemagglutinin and neuraminidase antigens onto a nitrocellulose-coated membrane using a microarray printer. Human sera are incubated on the microarray to bind antibodies against the influenza antigens. Quantum-dot-conjugated secondary antibodies are used to simultaneously detect IgG and IgA antibodies binding to each antigen on the microarray. Quantitative antibody binding is measured as fluorescence intensity using a portable imager. Representative results are shown to demonstrate assay reproducibility in measuring subtype-specific and cross-reactive influenza antibodies in human sera. Compared to traditional methods such as ELISA, the influenza antigen microarray provides a high throughput multiplexed approach capable of testing hundreds of sera for multiple antibody isotypes against hundreds of antigens in a short time frame, and thus has applications in sero-surveillance and vaccine development. A limitation is the inability to distinguish binding antibodies from neutralizing antibodies.

摘要

由于现有疫苗的有效性有限,流感病毒仍然是全球范围内导致死亡的一个重要原因。通用流感疫苗研发面临的一个关键挑战是抗原漂移导致的高抗原多样性。克服这一挑战需要新的研究工具来测量针对不同抗原亚型的多种病毒株的血清抗体广度。在此,我们介绍一种使用流感抗原蛋白微阵列分析针对多种流感病毒株的血清抗体广度的方法。这种流感抗原微阵列是通过使用微阵列打印机将纯化的血凝素和神经氨酸酶抗原打印到硝酸纤维素包被的膜上构建而成。将人血清与微阵列孵育,以结合针对流感抗原的抗体。使用量子点偶联的二抗同时检测与微阵列上每个抗原结合的IgG和IgA抗体。使用便携式成像仪将定量抗体结合测量为荧光强度。展示了代表性结果,以证明该方法在测量人血清中亚型特异性和交叉反应性流感抗体方面的可重复性。与酶联免疫吸附测定(ELISA)等传统方法相比,流感抗原微阵列提供了一种高通量多重方法,能够在短时间内针对数百种抗原检测数百份血清中的多种抗体亚型,因此在血清监测和疫苗开发中具有应用价值。一个局限性是无法区分结合抗体和中和抗体。

相似文献

5
Antibody Determinants of Influenza Immunity.
J Infect Dis. 2019 Apr 8;219(Suppl_1):S21-S29. doi: 10.1093/infdis/jiz010.
6
The antigenic landscape of human influenza N2 neuraminidases from 2009 until 2017.
Elife. 2024 May 28;12:RP90782. doi: 10.7554/eLife.90782.
10
Bioinformatics design and experimental validation of influenza A virus multi-epitopes that induce neutralizing antibodies.
Arch Virol. 2020 Apr;165(4):891-911. doi: 10.1007/s00705-020-04537-2. Epub 2020 Feb 14.

引用本文的文献

1
Risk factors for SARS-CoV-2 seropositivity in a health care worker population during the early pandemic.
BMC Infect Dis. 2023 May 16;23(1):330. doi: 10.1186/s12879-023-08284-y.
2
A Protein Microarray-Based Respiratory Viral Antigen Testing Platform for COVID-19 Surveillance.
Biomedicines. 2022 Sep 9;10(9):2238. doi: 10.3390/biomedicines10092238.
3
Characterization of pathogen-inactivated COVID-19 convalescent plasma and responses in transfused patients.
Transfusion. 2022 Oct;62(10):1997-2011. doi: 10.1111/trf.17083. Epub 2022 Sep 5.
4
Distinct SARS-CoV-2 antibody reactivity patterns elicited by natural infection and mRNA vaccination.
NPJ Vaccines. 2021 Nov 4;6(1):132. doi: 10.1038/s41541-021-00396-3.
6
Predicting COVID-19 Severity with a Specific Nucleocapsid Antibody plus Disease Risk Factor Score.
mSphere. 2021 Apr 28;6(2):e00203-21. doi: 10.1128/mSphere.00203-21.
8
Estimated seroprevalence of SARS-CoV-2 antibodies among adults in Orange County, California.
Sci Rep. 2021 Feb 4;11(1):3081. doi: 10.1038/s41598-021-82662-x.
10
A modular microarray imaging system for highly specific COVID-19 antibody testing.
Lab Chip. 2020 Sep 21;20(18):3302-3309. doi: 10.1039/d0lc00547a. Epub 2020 Aug 3.

本文引用的文献

3
Vaccines for preventing influenza in healthy adults.
Cochrane Database Syst Rev. 2018 Feb 1;2(2):CD001269. doi: 10.1002/14651858.CD001269.pub6.
5
Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12578-12583. doi: 10.1073/pnas.1712377114. Epub 2017 Nov 6.
6
Heterogeneity in Estimates of the Impact of Influenza on Population Mortality: A Systematic Review.
Am J Epidemiol. 2018 Feb 1;187(2):378-388. doi: 10.1093/aje/kwx270.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验