Suppr超能文献

连续心电图遥测监测趋势对预测院内心脏骤停的作用。

Usefulness of Trends in Continuous Electrocardiographic Telemetry Monitoring to Predict In-Hospital Cardiac Arrest.

机构信息

UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California.

UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California.

出版信息

Am J Cardiol. 2019 Oct 1;124(7):1149-1158. doi: 10.1016/j.amjcard.2019.06.032. Epub 2019 Jul 17.

Abstract

Survival from in-hospital cardiac arrest (IHCA) due to pulseless electrical activity/asystole remains poor. We aimed to evaluate whether electrocardiographic changes provide predictive information for risk of IHCA from pulseless electrical activity/asystole. We conducted a retrospective case-control study, utilizing continuous electrocardiographic data from case and control patients. We selected 3 consecutive 3-hour blocks (block 3, 2, and 1 in that order); block 1 immediately preceded cardiac arrest in cases, whereas block 1 was chosen at random in controls. In each block, we measured dominant positive and negative trends in electrocardiographic parameters, evaluated for arrhythmias, and compared these between consecutive blocks. We created random forest and logistic regression models, and tested them on differentiating case versus control patients (case block 1 vs control block 1), and temporal relation to cardiac arrest (case block 2 vs case block 1). Ninety-one cases (age 63.0 ± 17.6, 58% male) and 1,783 control patients (age 63.5 ± 14.8, 67% male) were evaluated. We found significant differences in electrocardiographic trends between case and control block 1, particularly in QRS duration, QTc, RR, and ST. New episodes of atrial fibrillation and bradyarrhythmias were more common before IHCA. The optimal model was the random forest, achieving an area under the curve of 0.829, 63.2% sensitivity, 94.6% specificity at differentiating case versus control block 1 on a validation set, and area under the curve 0.954, 91.2% sensitivity, 83.5% specificity at differentiating case block 1 versus case block 2. In conclusion, trends in electrocardiographic parameters during the 3-hour window immediately preceding IHCA differ significantly from other time periods, and provide robust predictive information.

摘要

院内心搏骤停(IHCA)患者的存活率仍然较低。本研究旨在评估心电图变化是否为电机械分离/心搏停止导致 IHCA 提供预测信息。我们进行了一项回顾性病例对照研究,利用病例和对照患者的连续心电图数据。我们选择了连续 3 个 3 小时的时间段(按顺序为第 3、2 和 1 个时间段);第 1 个时间段紧跟在病例中发生的心脏骤停之前,而在对照组中则随机选择第 1 个时间段。在每个时间段内,我们测量心电图参数的主导正性和负性趋势,评估心律失常,并比较连续时间段之间的差异。我们创建了随机森林和逻辑回归模型,并在区分病例与对照患者(病例第 1 时间段与对照第 1 时间段)和与心脏骤停的时间关系(病例第 2 时间段与病例第 1 时间段)方面对其进行了测试。共评估了 91 例病例(年龄 63.0 ± 17.6 岁,58%为男性)和 1783 例对照患者(年龄 63.5 ± 14.8 岁,67%为男性)。我们发现病例和对照第 1 时间段之间的心电图趋势存在显著差异,尤其是 QRS 持续时间、QTc、RR 和 ST。在 IHCA 之前,心房颤动和缓心律失常的新发作更为常见。最佳模型是随机森林,在验证集上区分病例和对照第 1 时间段时,曲线下面积为 0.829,敏感性为 63.2%,特异性为 94.6%,在区分病例第 1 时间段与病例第 2 时间段时,曲线下面积为 0.954,敏感性为 91.2%,特异性为 83.5%。总之,在 IHCA 前 3 小时时间段内心电图参数的趋势与其他时间段有明显差异,提供了强大的预测信息。

相似文献

1
Usefulness of Trends in Continuous Electrocardiographic Telemetry Monitoring to Predict In-Hospital Cardiac Arrest.
Am J Cardiol. 2019 Oct 1;124(7):1149-1158. doi: 10.1016/j.amjcard.2019.06.032. Epub 2019 Jul 17.
2
ECG changes on continuous telemetry preceding in-hospital cardiac arrests.
J Electrocardiol. 2015 Nov-Dec;48(6):1062-8. doi: 10.1016/j.jelectrocard.2015.08.001. Epub 2015 Aug 4.
3
Changes in paced signals may predict in-hospital cardiac arrest.
Pacing Clin Electrophysiol. 2018 Jan;41(1):2-6. doi: 10.1111/pace.13223. Epub 2017 Dec 8.
4
Electrocardiogram characteristics prior to in-hospital cardiac arrest.
J Clin Monit Comput. 2015 Jun;29(3):385-92. doi: 10.1007/s10877-014-9616-0. Epub 2014 Sep 19.
5
Electrocardiographic right ventricular strain precedes hypoxic pulseless electrical activity cardiac arrests: Looking beyond pulmonary embolism.
Resuscitation. 2020 Jun;151:127-134. doi: 10.1016/j.resuscitation.2020.04.024. Epub 2020 Apr 29.
6
Continuous electrocardiographic monitoring and cardiac arrest outcomes in 8,932 telemetry ward patients.
Acad Emerg Med. 2000 Jun;7(6):647-52. doi: 10.1111/j.1553-2712.2000.tb02038.x.
7
Association Between Prompt Defibrillation and Epinephrine Treatment With Long-Term Survival After In-Hospital Cardiac Arrest.
Circulation. 2018 May 8;137(19):2041-2051. doi: 10.1161/CIRCULATIONAHA.117.030488. Epub 2017 Dec 26.
9
Antecedent bradycardia and in-hospital cardiopulmonary arrest mortality in telemetry-monitored patients outside the ICU.
Resuscitation. 2012 Sep;83(9):1106-10. doi: 10.1016/j.resuscitation.2012.03.026. Epub 2012 Mar 30.
10
A case-control study of non-monitored ECG metrics preceding in-hospital bradyasystolic cardiac arrest: implication for predictive monitor alarms.
J Electrocardiol. 2013 Nov-Dec;46(6):608-15. doi: 10.1016/j.jelectrocard.2013.08.010. Epub 2013 Sep 10.

引用本文的文献

2
Dynamic electrocardiogram changes are a novel risk marker for sudden cardiac death.
Eur Heart J. 2024 Mar 7;45(10):809-819. doi: 10.1093/eurheartj/ehad770.
8
Artificial intelligence in telemetry: what clinicians should know.
Intensive Care Med. 2021 Feb;47(2):150-153. doi: 10.1007/s00134-020-06295-w. Epub 2021 Jan 2.
9
Electrocardiographic right ventricular strain precedes hypoxic pulseless electrical activity cardiac arrests: Looking beyond pulmonary embolism.
Resuscitation. 2020 Jun;151:127-134. doi: 10.1016/j.resuscitation.2020.04.024. Epub 2020 Apr 29.

本文引用的文献

1
An algorithm strategy for precise patient monitoring in a connected healthcare enterprise.
NPJ Digit Med. 2019 Apr 30;2:30. doi: 10.1038/s41746-019-0107-z. eCollection 2019.
5
Developing new predictive alarms based on ECG metrics for bradyasystolic cardiac arrest.
Physiol Meas. 2015 Dec;36(12):2405-22. doi: 10.1088/0967-3334/36/12/2405. Epub 2015 Oct 26.
6
ECG changes on continuous telemetry preceding in-hospital cardiac arrests.
J Electrocardiol. 2015 Nov-Dec;48(6):1062-8. doi: 10.1016/j.jelectrocard.2015.08.001. Epub 2015 Aug 4.
7
Causes of in-hospital cardiac arrest - incidences and rate of recognition.
Resuscitation. 2015 Feb;87:63-8. doi: 10.1016/j.resuscitation.2014.11.007. Epub 2014 Nov 27.
9
Integrating monitor alarms with laboratory test results to enhance patient deterioration prediction.
J Biomed Inform. 2015 Feb;53:81-92. doi: 10.1016/j.jbi.2014.09.006. Epub 2014 Sep 18.
10
Electrocardiogram characteristics prior to in-hospital cardiac arrest.
J Clin Monit Comput. 2015 Jun;29(3):385-92. doi: 10.1007/s10877-014-9616-0. Epub 2014 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验