UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
Am J Cardiol. 2019 Oct 1;124(7):1149-1158. doi: 10.1016/j.amjcard.2019.06.032. Epub 2019 Jul 17.
Survival from in-hospital cardiac arrest (IHCA) due to pulseless electrical activity/asystole remains poor. We aimed to evaluate whether electrocardiographic changes provide predictive information for risk of IHCA from pulseless electrical activity/asystole. We conducted a retrospective case-control study, utilizing continuous electrocardiographic data from case and control patients. We selected 3 consecutive 3-hour blocks (block 3, 2, and 1 in that order); block 1 immediately preceded cardiac arrest in cases, whereas block 1 was chosen at random in controls. In each block, we measured dominant positive and negative trends in electrocardiographic parameters, evaluated for arrhythmias, and compared these between consecutive blocks. We created random forest and logistic regression models, and tested them on differentiating case versus control patients (case block 1 vs control block 1), and temporal relation to cardiac arrest (case block 2 vs case block 1). Ninety-one cases (age 63.0 ± 17.6, 58% male) and 1,783 control patients (age 63.5 ± 14.8, 67% male) were evaluated. We found significant differences in electrocardiographic trends between case and control block 1, particularly in QRS duration, QTc, RR, and ST. New episodes of atrial fibrillation and bradyarrhythmias were more common before IHCA. The optimal model was the random forest, achieving an area under the curve of 0.829, 63.2% sensitivity, 94.6% specificity at differentiating case versus control block 1 on a validation set, and area under the curve 0.954, 91.2% sensitivity, 83.5% specificity at differentiating case block 1 versus case block 2. In conclusion, trends in electrocardiographic parameters during the 3-hour window immediately preceding IHCA differ significantly from other time periods, and provide robust predictive information.
院内心搏骤停(IHCA)患者的存活率仍然较低。本研究旨在评估心电图变化是否为电机械分离/心搏停止导致 IHCA 提供预测信息。我们进行了一项回顾性病例对照研究,利用病例和对照患者的连续心电图数据。我们选择了连续 3 个 3 小时的时间段(按顺序为第 3、2 和 1 个时间段);第 1 个时间段紧跟在病例中发生的心脏骤停之前,而在对照组中则随机选择第 1 个时间段。在每个时间段内,我们测量心电图参数的主导正性和负性趋势,评估心律失常,并比较连续时间段之间的差异。我们创建了随机森林和逻辑回归模型,并在区分病例与对照患者(病例第 1 时间段与对照第 1 时间段)和与心脏骤停的时间关系(病例第 2 时间段与病例第 1 时间段)方面对其进行了测试。共评估了 91 例病例(年龄 63.0 ± 17.6 岁,58%为男性)和 1783 例对照患者(年龄 63.5 ± 14.8 岁,67%为男性)。我们发现病例和对照第 1 时间段之间的心电图趋势存在显著差异,尤其是 QRS 持续时间、QTc、RR 和 ST。在 IHCA 之前,心房颤动和缓心律失常的新发作更为常见。最佳模型是随机森林,在验证集上区分病例和对照第 1 时间段时,曲线下面积为 0.829,敏感性为 63.2%,特异性为 94.6%,在区分病例第 1 时间段与病例第 2 时间段时,曲线下面积为 0.954,敏感性为 91.2%,特异性为 83.5%。总之,在 IHCA 前 3 小时时间段内心电图参数的趋势与其他时间段有明显差异,提供了强大的预测信息。