School of Chemistry and Materials Science, College of Science, Rochester Institute of Technology, Rochester, New York, USA
Department of Mechanical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA.
Tob Control. 2020 Feb;29(Suppl 2):s117-s122. doi: 10.1136/tobaccocontrol-2019-054966. Epub 2019 Aug 12.
Puffing topographies of waterpipe users vary widely as does the puff-to-puff topography of an individual user. The aim of this study was to determine if puff duration and flow rate have an effect on the characteristics of the mainstream emission from waterpipes, including total particulate matter (TPM), mass ratio of nicotine and mass concentration of volatile carbonyls.
Puffing parameters were chosen to encompass a significant portion of the perimeter space observed from a natural environment study. Tested conditions were 150, 200 and 250 mL sec; each run at 2, 3.5 and 5 s durations; 25 s interpuff duration and ~100 puffs per session. Each session was run in quadruplicate using the Programmable Emissions System-2 (PES-2) emissions capture system under identical conditions. Particulate matter, for quantification of TPM and nicotine, was collected on filter pads every ~5 L of aerosol resulting in 6 to 25 samples per session. Volatile carbonyls were sampled using 2,4-Dinitrophenylhydrazine (DNPH)-coated silica.
Mass concentration of TPM linearly decreased with increased flow rate, with no dependency on puff duration. Nicotine mass ratio was independent of topography, with average mass ratio of nicotine to TPM of 0.0027±0.0002 (mg/mg). The main carbonyls observed were acetaldehyde and formaldehyde. Puff duration increased emissions of some carbonyls (eg, formaldehyde) but not others (eg, acetaldehyde).
The results presented here highlight that topographies influence the emissions generated from waterpipes including TPM, total nicotine and volatile carbonyls. For laboratory studies to be representative of user exposure, a range of topographies must be studied. Using a range of topographies within a controlled laboratory environment will better inform regulatory policy.
水烟使用者的吸烟模式差异很大,个体使用者的每口吸烟模式也差异很大。本研究旨在确定吸烟持续时间和流速是否会影响水烟主流排放物的特性,包括总颗粒物(TPM)、尼古丁质量比和挥发性羰基化合物的质量浓度。
选择吸烟参数来涵盖从自然环境研究中观察到的周长空间的很大一部分。测试条件为 150、200 和 250ml/s;每个持续时间为 2、3.5 和 5s;25s 吸嘴间隔时间和~100 次抽吸/次。在相同条件下,使用可编程排放系统-2(PES-2)排放捕获系统重复进行四次每个抽吸模式的测试。使用 2,4-二硝基苯肼(DNPH)涂覆的硅胶收集用于定量 TPM 和尼古丁的颗粒物,每次抽吸约 5L 气溶胶后收集 6 到 25 个样本。挥发性羰基化合物采用 2,4-二硝基苯肼(DNPH)-涂覆的硅胶进行采样。
TPM 的质量浓度与流速呈线性关系,随流速增加而降低,与吸烟持续时间无关。尼古丁质量比与吸烟模式无关,尼古丁与 TPM 的平均质量比为 0.0027±0.0002(mg/mg)。观察到的主要羰基化合物是乙醛和甲醛。吸烟持续时间增加了一些羰基化合物(例如甲醛)的排放量,但没有增加其他羰基化合物(例如乙醛)的排放量。
本研究结果表明,吸烟模式会影响水烟产生的排放物,包括 TPM、总尼古丁和挥发性羰基化合物。为了使实验室研究能够代表用户暴露情况,必须研究一系列吸烟模式。在受控的实验室环境中使用一系列吸烟模式将更好地为监管政策提供信息。