Suppr超能文献

炔基标记的 PLGA 允许通过受激拉曼散射显微镜在体外和体内直接观察纳米粒子。

Alkyne-Tagged PLGA Allows Direct Visualization of Nanoparticles In Vitro and Ex Vivo by Stimulated Raman Scattering Microscopy.

机构信息

EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh , EH9 3FJ , United Kingdom.

Edinburgh Cancer Research UK Centre , University of Edinburgh, Western General Hospital , Crewe Road South , Edinburgh , EH4 2XR , United Kingdom.

出版信息

Biomacromolecules. 2019 Oct 14;20(10):4008-4014. doi: 10.1021/acs.biomac.9b01092. Epub 2019 Aug 29.

Abstract

Polymeric nanoparticles (NPs) are attractive candidates for the controlled and targeted delivery of therapeutics in vitro and in vivo. However, detailed understanding of the uptake, location, and ultimate cellular fate of the NPs is necessary to satisfy safety concerns, which is difficult because of the nanoscale size of these carriers. In this work, we show how small chemical labels can be appended to poly(lactic acid--glycolic acid) (PLGA) to synthesize NPs that can then be imaged by stimulated Raman scattering microscopy, a vibrational imaging technique that can elucidate bond-specific information in biological environments, such as the identification of alkyne signatures in modified PLGA terpolymers. We show that both deuterium and alkyne labeled NPs can be imaged within primary rat microglia, and the alkyne NPs can also be imaged in ex vivo cortical mouse brain tissue. Immunohistochemical analysis confirms that the NPs localize in microglia in the mouse brain tissue, demonstrating that these NPs have the potential to deliver therapeutics selectively to microglia.

摘要

聚合物纳米粒子(NPs)是体外和体内控制和靶向递药的有吸引力的候选物。然而,为了满足安全性的担忧,需要详细了解 NPs 的摄取、位置和最终的细胞命运,这是因为这些载体的纳米级尺寸而变得困难。在这项工作中,我们展示了如何将小的化学标签附加到聚(乳酸-乙醇酸)(PLGA)上来合成 NPs,然后可以通过受激拉曼散射显微镜进行成像,这是一种振动成像技术,可以阐明生物环境中的键特异性信息,例如在修饰的 PLGA 三聚物中鉴定炔烃特征。我们表明,氘和炔烃标记的 NPs 都可以在原代大鼠小胶质细胞内成像,并且炔烃 NPs 也可以在离体皮质小鼠脑组织中成像。免疫组织化学分析证实 NPs 在小鼠脑组织中的小胶质细胞中定位,表明这些 NPs 有可能将治疗药物选择性递送到小胶质细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efdf/6794644/9ff3ce246a5e/bm9b01092_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验