Suppr超能文献

开发一种床边工具,以预测住院成年革兰氏阴性感染患者中耐药病原体的概率。

Development of a bedside tool to predict the probability of drug-resistant pathogens among hospitalized adult patients with gram-negative infections.

机构信息

Albany College of Pharmacy and Health Sciences, Albany, NY, 12208-3492, USA.

Allergan plc, Irvine, CA, USA.

出版信息

BMC Infect Dis. 2019 Aug 14;19(1):718. doi: 10.1186/s12879-019-4363-y.

Abstract

BACKGROUND

We developed a clinical bedside tool to simultaneously estimate the probabilities of third-generation cephalosporin-resistant Enterobacteriaceae (3GC-R), carbapenem-resistant Enterobacteriaceae (CRE), and multidrug-resistant Pseudomonas aeruginosa (MDRP) among hospitalized adult patients with Gram-negative infections.

METHODS

Data were obtained from a retrospective observational study of the Premier Hospital that included hospitalized adult patients with a complicated urinary tract infection (cUTI), complicated intra-abdominal infection (cIAI), hospital-acquired/ventilator-associated pneumonia (HAP/VAP), or bloodstream infection (BSI) due to Gram-negative bacteria between 2011 and 2015. Risk factors for 3GC-R, CRE, and MDRP were ascertained by multivariate logistic regression, and separate models were developed for patients with community-acquired versus hospital-acquired infections for each resistance phenotype (N = 6). Models were converted to a singular user-friendly interface to estimate the probabilities of a patient having an infection due to 3GC-R, CRE, or MDRP when ≥ 1 risk factor was present.

RESULTS

Overall, 124,068 patients contributed to the dataset. Percentages of patients admitted for cUTI, cIAI, HAP/VAP, and BSI were 61.6, 4.6, 16.5, and 26.4%, respectively (some patients contributed > 1 infection type). Resistant infection rates were 1.90% for CRE, 12.09% for 3GC-R, and 3.91% for MDRP. A greater percentage of the resistant infections were community-acquired relative to hospital-acquired (CRE, 1.30% vs 0.62% of 1.90%; 3GC-R, 9.27% vs 3.42% of 12.09%; MDRP, 2.39% vs 1.59% of 3.91%). The most important predictors of having an 3GC-R, CRE or MDRP infection were prior number of antibiotics; infection site; infection during the previous 3 months; and hospital prevalence of 3GC-R, CRE, or MDRP. To enable application of the six predictive multivariate logistic regression models to real-world clinical practice, we developed a user-friendly interface that estimates the risk of 3GC-R, CRE, and MDRP simultaneously in a given patient with a Gram-negative infection based on their risk (Additional file 1).

CONCLUSIONS

We developed a clinical prediction tool to estimate the probabilities of 3GC-R, CRE, and MDRP among hospitalized adult patients with confirmed community- and hospital-acquired Gram-negative infections. Our predictive model has been implemented as a user-friendly bedside tool for use by clinicians/healthcare professionals to predict the probability of resistant infections in individual patients, to guide early appropriate therapy.

摘要

背景

我们开发了一种临床床边工具,用于同时估计第三代头孢菌素耐药肠杆菌科(3GC-R)、碳青霉烯类耐药肠杆菌科(CRE)和多药耐药铜绿假单胞菌(MDRP)在住院成年革兰氏阴性感染患者中的概率。

方法

数据来自 Premier 医院的一项回顾性观察研究,该研究纳入了 2011 年至 2015 年间因革兰氏阴性菌引起的复杂性尿路感染(cUTI)、复杂性腹腔内感染(cIAI)、医院获得性/呼吸机相关性肺炎(HAP/VAP)或血流感染(BSI)的住院成年患者。通过多变量逻辑回归确定 3GC-R、CRE 和 MDRP 的危险因素,并为每个耐药表型的社区获得性与医院获得性感染患者(N=6)分别建立单独的模型。模型被转换为一个单一的用户友好界面,以估计当≥1 个危险因素存在时,患者发生由 3GC-R、CRE 或 MDRP 引起的感染的概率。

结果

总体而言,有 124068 名患者参与了数据集。cUTI、cIAI、HAP/VAP 和 BSI 患者的入院比例分别为 61.6%、4.6%、16.5%和 26.4%(部分患者有多种感染类型)。耐药感染率分别为 CRE 1.90%、3GC-R 12.09%和 MDRP 3.91%。与医院获得性感染相比,耐药感染中社区获得性感染的比例更高(CRE:1.30%比 0.62%,占 1.90%;3GC-R:9.27%比 3.42%,占 12.09%;MDRP:2.39%比 1.59%,占 3.91%)。发生 3GC-R、CRE 或 MDRP 感染的最重要预测因素是既往使用抗生素的数量;感染部位;前 3 个月内的感染;以及医院 3GC-R、CRE 或 MDRP 的流行率。为了将六个预测多变量逻辑回归模型应用于实际临床实践,我们开发了一个用户友好的界面,根据患者的风险,同时估计革兰氏阴性感染患者发生 3GC-R、CRE 和 MDRP 的风险(附加文件 1)。

结论

我们开发了一种临床预测工具,用于估计住院成年社区和医院获得性革兰氏阴性感染患者发生 3GC-R、CRE 和 MDRP 的概率。我们的预测模型已经作为一个用户友好的床边工具实施,以便临床医生/医疗保健专业人员用于预测个体患者耐药感染的概率,指导早期适当的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25b0/6694572/1a7e6849cb62/12879_2019_4363_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验