Applied Clinical Research Center, Roberts Center for Pediatric Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America.
Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
PLoS One. 2019 Aug 15;14(8):e0221233. doi: 10.1371/journal.pone.0221233. eCollection 2019.
The Johns Hopkins ACG System is widely used to predict patient healthcare service use and costs. Most applications have focused on adult populations. In this study, we evaluated the use of the ACG software to predict pediatric unplanned hospital admission in a given month, based on the past year's clinical information captured by electronic health records (EHRs).
EHR data from a multi-state pediatric integrated delivery system were obtained for 920,051 patients with at least one physician visit during January 2009 to December 2016. Over this interval an average of 0.36% of patients each month had an unplanned hospitalization. In a 70% training sample, we used the generalized linear mixed model (GLMM) to generate regression coefficients for demographic, clinical predictors derived from the ACG system, and prior year hospitalizations. Applying these coefficients to a 30% test sample to generate risk scores, we found that the area under the receiver operator characteristic curve (AUC) was 0.82. Omitting prior hospitalizations decreased the AUC from 0.82 to 0.80, and increased under-estimation of hospitalizations at the greater risk levels. Patients in the top 5% of risk scores accounted for 43% and the top 1% of risk scores accounted for 20% of all unplanned hospitalizations.
A predictive model based on 12-months of demographic and clinical data using the ACG system has excellent predictive performance for 30-day pediatric unplanned hospitalization. This model may be useful in population health and care management applications targeting patients likely to be hospitalized. External validation at other institutions should be done to confirm our results.
约翰霍普金斯 ACG 系统被广泛用于预测患者的医疗服务利用和成本。大多数应用都集中在成年人群体上。在这项研究中,我们评估了使用 ACG 软件根据电子健康记录 (EHR) 中过去一年的临床信息,预测特定月份儿科患者非计划性住院的情况。
我们从一个多州儿科综合交付系统获取了 920051 名至少有一次就诊的患者的 EHR 数据,这些患者的就诊时间为 2009 年 1 月至 2016 年 12 月。在此期间,每月平均有 0.36%的患者非计划性住院。在 70%的训练样本中,我们使用广义线性混合模型 (GLMM) 生成来自 ACG 系统的人口统计学、临床预测因子和前一年住院的回归系数。将这些系数应用于 30%的测试样本以生成风险评分,我们发现受试者工作特征曲线下面积 (AUC)为 0.82。省略前一年的住院记录会使 AUC 从 0.82 降低到 0.80,并增加高风险水平下的住院低估。风险评分前 5%的患者占所有非计划性住院的 43%,风险评分前 1%的患者占 20%。
基于 12 个月的人口统计学和临床数据,使用 ACG 系统的预测模型对 30 天儿科非计划性住院具有出色的预测性能。该模型可用于针对可能住院的患者的人群健康和护理管理应用。应在其他机构进行外部验证以确认我们的结果。