文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于双时相 PET/CT 图像邻域灰度差矩阵纹理特征鉴别良恶性 FDG 摄取孤立性肺结节。

Using neighborhood gray tone difference matrix texture features on dual time point PET/CT images to differentiate malignant from benign FDG-avid solitary pulmonary nodules.

机构信息

Department of Nuclear Medicine, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, People's Republic of China.

Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA.

出版信息

Cancer Imaging. 2019 Aug 16;19(1):56. doi: 10.1186/s40644-019-0243-3.


DOI:10.1186/s40644-019-0243-3
PMID:31420006
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6697997/
Abstract

OBJECTIVE: Lung cancer usually presents as a solitary pulmonary nodule (SPN) on diagnostic imaging during the early stages of the disease. Since the early diagnosis of lung cancer is very important for treatment, the accurate diagnosis of SPNs has much importance. The aim of this study was to evaluate the discriminant power of dual time point imaging (DTPI) PET/CT in the differentiation of malignant and benign FDG-avid solitary pulmonary nodules by using neighborhood gray-tone difference matrix (NGTDM) texture features. METHODS: Retrospective analysis was carried out on 116 patients with SPNs (35 benign and 81 malignant) who had DTPI F-FDG PET/CT between January 2005 and May 2015. Both PET and CT images were acquired at 1 h and 3 h after injection. The SUV and NGTDM texture features (coarseness, contrast, and busyness) of each nodule were calculated on dual time point images. Patients were randomly divided into training and validation datasets. Receiver operating characteristic (ROC) curve analysis was performed on all texture features in the training dataset to calculate the optimal threshold for differentiating malignant SPNs from benign SPNs. For all the lesions in the testing dataset, two visual interpretation scores were determined by two nuclear medicine physicians based on the PET/CT images with and without reference to the texture features. RESULTS: In the training dataset, the AUCs of delayed busyness, delayed coarseness, early busyness, and early SUV were 0.87, 0.85, 0.75 and 0.75, respectively. In the validation dataset, the AUCs of visual interpretations with and without texture features were 0.89 and 0.80, respectively. CONCLUSION: Compared to SUV or visual interpretation, NGTDM texture features derived from DTPI PET/CT images can be used as good predictors of SPN malignancy. Improvement in discriminating benign from malignant nodules using SUVmax and visual interpretation can be achieved by adding busyness extracted from delayed PET/CT images.

摘要

目的:在疾病早期的诊断影像学中,肺癌通常表现为单个肺部结节(SPN)。由于早期诊断肺癌对治疗非常重要,因此准确诊断 SPN 非常重要。本研究旨在通过使用邻域灰度差矩阵(NGTDM)纹理特征评估双时相成像(DTPI) PET/CT 在鉴别 FDG 摄取的恶性和良性 SPN 中的判别能力。

方法:回顾性分析了 2005 年 1 月至 2015 年 5 月间进行 DTPI F-FDG PET/CT 的 116 名 SPN 患者(35 例良性和 81 例恶性)。注射后 1 小时和 3 小时采集 PET 和 CT 图像。计算每个结节的 SUV 和 NGTDM 纹理特征(粗糙度、对比度和繁忙度)。患者被随机分为训练和验证数据集。在训练数据集中对所有纹理特征进行接收者操作特征(ROC)曲线分析,以计算区分恶性 SPN 和良性 SPN 的最佳阈值。对于测试数据集中的所有病变,两位核医学医师根据带有和不带有纹理特征的 PET/CT 图像确定两个视觉解释评分。

结果:在训练数据集中,延迟忙碌度、延迟粗糙度、早期忙碌度和早期 SUV 的 AUC 分别为 0.87、0.85、0.75 和 0.75。在验证数据集中,带有和不带有纹理特征的视觉解释的 AUC 分别为 0.89 和 0.80。

结论:与 SUV 或视觉解释相比,源自 DTPI PET/CT 图像的 NGTDM 纹理特征可作为 SPN 恶性程度的良好预测指标。通过添加延迟 PET/CT 图像中提取的忙碌度,可以提高 SUVmax 和视觉解释对良恶性结节的鉴别能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727d/6697997/e11d79d7b63f/40644_2019_243_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727d/6697997/108afab6301f/40644_2019_243_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727d/6697997/238991c09d23/40644_2019_243_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727d/6697997/e11d79d7b63f/40644_2019_243_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727d/6697997/108afab6301f/40644_2019_243_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727d/6697997/238991c09d23/40644_2019_243_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727d/6697997/e11d79d7b63f/40644_2019_243_Fig3_HTML.jpg

相似文献

[1]
Using neighborhood gray tone difference matrix texture features on dual time point PET/CT images to differentiate malignant from benign FDG-avid solitary pulmonary nodules.

Cancer Imaging. 2019-8-16

[2]
Limited diagnostic value of Dual-Time-Point (18)F-FDG PET/CT imaging for classifying solitary pulmonary nodules in granuloma-endemic regions both at visual and quantitative analyses.

Eur J Radiol. 2016-10

[3]
Diagnostic classification of solitary pulmonary nodules using dual time F-FDG PET/CT image texture features in granuloma-endemic regions.

Sci Rep. 2017-8-24

[4]
Contribution of nonattenuation-corrected images on FDG-PET/CT in the assessment of solitary pulmonary nodules.

Radiol Med. 2016-12

[5]
The clinical value of texture analysis of dual-time-point F-FDG-PET/CT imaging to differentiate between F-FDG-avid benign and malignant pulmonary lesions.

Eur Radiol. 2019-11-14

[6]
Combination of positron emission tomography/computed tomography and chest thin-layer high-resolution computed tomography for evaluation of pulmonary nodules: Correlation with imaging features, maximum standardized uptake value, and pathology.

Medicine (Baltimore). 2018-8

[7]
Accuracy of early and delayed FDG PET-CT and of contrast-enhanced CT in the evaluation of lung nodules: a preliminary study on 30 patients.

Radiol Med. 2009-9

[8]
The Multicenter Italian Trial Assesses the Performance of FDG-PET /CT Related to Pre-Test Cancer Risk in Patients with Solitary Pulmonary Nodules and Introduces a Segmental Thoracic Diagnostic Strategy.

Curr Radiopharm. 2020

[9]
An 18F-FDG-PET/CT-based radiomics signature for estimating malignance probability of solitary pulmonary nodule.

Clin Respir J. 2024-5

[10]
The diagnostic role of dual-phase (18)F-FDG PET/CT in the characterization of solitary pulmonary nodules.

Nucl Med Commun. 2014-3

引用本文的文献

[1]
[Application Value of an AI-based Imaging Feature Parameter Model 
for Predicting the Malignancy of Part-solid Pulmonary Nodule].

Zhongguo Fei Ai Za Zhi. 2025-4-20

[2]
Value of serum LncRNA KIF9-AS1 combined with CT signs in the diagnosis of benign and malignant early pulmonary nodules and its correlation with prognosis.

J Cardiothorac Surg. 2025-5-9

[3]
A machine learning model utilizing CT radiomics features and peripheral blood inflammatory markers predicts the prognosis of patients with unresectable esophageal squamous cell carcinoma undergoing PD-1 inhibitor combined with concurrent chemoradiotherapy.

J Cancer. 2025-3-3

[4]
Using 18F-FDG PET/CT to predict programmed cell death ligand expression in non-small cell lung cancer via metabolic tumour heterogeneity.

Br J Radiol. 2025-5-1

[5]
Multi-type classification of lung nodules based on CT radiomics and ensemble learning for diversity weighting.

Quant Imaging Med Surg. 2024-12-5

[6]
Principal Component Analysis Applied to Radiomics Data: Added Value for Separating Benign from Malignant Solitary Pulmonary Nodules.

J Clin Med. 2023-12-17

[7]
Application of a Radiomics Machine Learning Model for Differentiating Aldosterone-Producing Adenoma from Non-Functioning Adrenal Adenoma.

Bioengineering (Basel). 2023-12-14

[8]
Computerized Tomography Texture Analysis in the Differential Diagnosis of Intracranial Epidermoid and Arachnoid Cysts.

Cureus. 2023-7-16

[9]
Serum lncRNA THRIL predicts benign and malignant pulmonary nodules and promotes the progression of pulmonary malignancies.

BMC Cancer. 2023-8-15

[10]
Qualitative and Semiquantitative Parameters of F-FDG-PET/CT as Predictors of Malignancy in Patients with Solitary Pulmonary Nodule.

Cancers (Basel). 2023-2-4

本文引用的文献

[1]
Advances in Imaging and Automated Quantification of Malignant Pulmonary Diseases: A State-of-the-Art Review.

Lung. 2018-10-9

[2]
Lung Cancer Screening, Version 3.2018, NCCN Clinical Practice Guidelines in Oncology.

J Natl Compr Canc Netw. 2018-4

[3]
Diagnostic classification of solitary pulmonary nodules using dual time F-FDG PET/CT image texture features in granuloma-endemic regions.

Sci Rep. 2017-8-24

[4]
Non-Small Cell Lung Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology.

J Natl Compr Canc Netw. 2017-4

[5]
Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017.

Radiology. 2017-2-23

[6]
Limited diagnostic value of Dual-Time-Point (18)F-FDG PET/CT imaging for classifying solitary pulmonary nodules in granuloma-endemic regions both at visual and quantitative analyses.

Eur J Radiol. 2016-10

[7]
Evaluation of Pulmonary Nodules: Clinical Practice Consensus Guidelines for Asia.

Chest. 2016-2-27

[8]
Voxel-based texture analysis of the brain.

PLoS One. 2015-3-10

[9]
Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: a meta-analysis.

JAMA. 2014-9-24

[10]
Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis.

J Nucl Med. 2014-2-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索