Suppr超能文献

存在地理混杂因素时住院时间的种族差异分析。

Analysis of racial differences in hospital stays in the presence of geographic confounding.

作者信息

Davis Melanie L, Neelon Brian, Nietert Paul J, Burgette Lane F, Hunt Kelly J, Lawson Andrew B, Egede Leonard E

机构信息

Medical University of South Carolina, Charleston, United States.

Medical University of South Carolina, Charleston, United States.

出版信息

Spat Spatiotemporal Epidemiol. 2019 Aug;30:100284. doi: 10.1016/j.sste.2019.100284. Epub 2019 Jul 5.

Abstract

Using recent methods for spatial propensity score modeling, we examine differences in hospital stays between non-Hispanic black and non-Hispanic white veterans with type 2 diabetes. We augment a traditional patient-level propensity score model with a spatial random effect to create a matched sample based on the estimated propensity score. We then use a spatial negative binomial hurdle model to estimate differences in both hospital admissions and inpatient days. We demonstrate that in the presence of unmeasured geographic confounding, spatial propensity score matching in addition to the spatial negative binomial hurdle outcome model yields improved performance compared to the outcome model alone. In the motivating application, we construct three estimates of racial differences in hospitalizations: the risk difference in admission, the mean difference in number of inpatient days among those hospitalized, and the mean difference in number of inpatient days across all patients (hospitalized and non-hospitalized). Results indicate that non-Hispanic black veterans with type 2 diabetes have a lower risk of hospital admission and a greater number of inpatient days on average. The latter result is especially important considering that we observed much smaller effect sizes in analyses that did not incorporate spatial matching. These results emphasize the need to address geographic confounding in health disparity studies.

摘要

利用空间倾向评分建模的最新方法,我们研究了患有2型糖尿病的非西班牙裔黑人和非西班牙裔白人退伍军人在住院时间上的差异。我们在传统的患者水平倾向评分模型中加入空间随机效应,以基于估计的倾向评分创建匹配样本。然后,我们使用空间负二项障碍模型来估计住院次数和住院天数的差异。我们证明,在存在未测量的地理混杂因素的情况下,与仅使用结局模型相比,除了空间负二项障碍结局模型外,空间倾向评分匹配还能提高性能。在实际应用中,我们构建了住院种族差异的三个估计值:入院风险差异、住院患者住院天数的平均差异以及所有患者(住院和未住院)住院天数的平均差异。结果表明,患有2型糖尿病的非西班牙裔黑人退伍军人住院风险较低,平均住院天数较多。考虑到我们在未纳入空间匹配的分析中观察到的效应量要小得多,后一个结果尤为重要。这些结果强调了在健康差异研究中解决地理混杂因素的必要性。

相似文献

本文引用的文献

1
Propensity score weighting for a continuous exposure with multilevel data.针对具有多级数据的连续暴露进行倾向得分加权。
Health Serv Outcomes Res Methodol. 2016 Dec;16(4):271-292. doi: 10.1007/s10742-016-0157-5. Epub 2016 Aug 25.
6
Propensity score weighting with multilevel data.倾向评分加权与多层次数据。
Stat Med. 2013 Aug 30;32(19):3373-87. doi: 10.1002/sim.5786. Epub 2013 Mar 24.
7
Causal inference in public health.公共卫生中的因果推断。
Annu Rev Public Health. 2013;34:61-75. doi: 10.1146/annurev-publhealth-031811-124606. Epub 2013 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验