Suppr超能文献

针对具有多级数据的连续暴露进行倾向得分加权。

Propensity score weighting for a continuous exposure with multilevel data.

作者信息

Schuler Megan S, Chu Wanghuan, Coffman Donna

机构信息

Department of Health Care Policy, Harvard Medical School, Boston, MA 02215.

Google, Inc., Mountain View, CA 94043, USA.

出版信息

Health Serv Outcomes Res Methodol. 2016 Dec;16(4):271-292. doi: 10.1007/s10742-016-0157-5. Epub 2016 Aug 25.

Abstract

Propensity score methods (e.g., matching, weighting, subclassification) provide a statistical approach for balancing dissimilar exposure groups on baseline covariates. These methods were developed in the context of data with no hierarchical structure or clustering. Yet in many applications the data have a clustered structure that is of substantive importance, such as when individuals are nested within healthcare providers or within schools. Recent work has extended propensity score methods to a multilevel setting, primarily focusing on binary exposures. In this paper, we focus on propensity score weighting for a continuous, rather than binary, exposure in a multilevel setting. Using simulations, we compare several specifications of the propensity score: a random effects model, a fixed effects model, and a single-level model. Additionally, our simulations compare the performance of marginal versus cluster-mean stabilized propensity score weights. In our results, regression specifications that accounted for the multilevel structure reduced bias, particularly when cluster-level confounders were omitted. Furthermore, cluster mean weights outperformed marginal weights.

摘要

倾向得分方法(例如匹配、加权、亚分类)提供了一种统计方法,用于在基线协变量上平衡不同的暴露组。这些方法是在没有层次结构或聚类的数据背景下开发的。然而,在许多应用中,数据具有具有实质性重要性的聚类结构,例如当个体嵌套在医疗保健提供者或学校中时。最近的工作已将倾向得分方法扩展到多级设置,主要侧重于二元暴露。在本文中,我们关注多级设置中连续而非二元暴露的倾向得分加权。通过模拟,我们比较了倾向得分的几种规格:随机效应模型、固定效应模型和单级模型。此外,我们的模拟比较了边际倾向得分权重与聚类均值稳定倾向得分权重的性能。在我们的结果中,考虑多级结构的回归规格减少了偏差,特别是在省略聚类水平混杂因素时。此外,聚类均值权重优于边际权重。

相似文献

1
Propensity score weighting for a continuous exposure with multilevel data.
Health Serv Outcomes Res Methodol. 2016 Dec;16(4):271-292. doi: 10.1007/s10742-016-0157-5. Epub 2016 Aug 25.
2
Propensity Score Weighting with Missing Data on Covariates and Clustered Data Structure.
Multivariate Behav Res. 2024 May-Jun;59(3):411-433. doi: 10.1080/00273171.2024.2307529. Epub 2024 Feb 20.
3
Parametric and nonparametric propensity score estimation in multilevel observational studies.
Stat Med. 2023 Oct 15;42(23):4147-4176. doi: 10.1002/sim.9852. Epub 2023 Aug 2.
4
Causal Inference with Multilevel Data: A Comparison of Different Propensity Score Weighting Approaches.
Multivariate Behav Res. 2022 Nov-Dec;57(6):916-939. doi: 10.1080/00273171.2021.1925521. Epub 2021 Jun 15.
5
Flexible propensity score estimation strategies for clustered data in observational studies.
Stat Med. 2022 Nov 10;41(25):5016-5032. doi: 10.1002/sim.9551. Epub 2022 Aug 18.
6
Propensity score weighting with multilevel data.
Stat Med. 2013 Aug 30;32(19):3373-87. doi: 10.1002/sim.5786. Epub 2013 Mar 24.
7
Assessing covariate balance when using the generalized propensity score with quantitative or continuous exposures.
Stat Methods Med Res. 2019 May;28(5):1365-1377. doi: 10.1177/0962280218756159. Epub 2018 Feb 8.
9
An overview of propensity score matching methods for clustered data.
Stat Methods Med Res. 2023 Apr;32(4):641-655. doi: 10.1177/09622802221133556. Epub 2022 Nov 25.
10
Comparing the performance of propensity score methods in healthcare database studies with rare outcomes.
Stat Med. 2017 May 30;36(12):1946-1963. doi: 10.1002/sim.7250. Epub 2017 Feb 16.

引用本文的文献

1
Inverse probability weighting for causal inference in hierarchical data.
BMC Med Res Methodol. 2025 Aug 1;25(1):185. doi: 10.1186/s12874-025-02627-w.
2
A Two-Stage Method for Extending Inferences From a Collection of Trials.
Stat Med. 2025 Jun;44(13-14):e70146. doi: 10.1002/sim.70146.
4
Childhood PM exposure and upward mobility in the United States.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2401882121. doi: 10.1073/pnas.2401882121. Epub 2024 Sep 9.
5
Use of Healthcare Claims Data to Generate Real-World Evidence on Patients With Drug-Resistant Epilepsy: Practical Considerations for Research.
J Health Econ Outcomes Res. 2024 Feb 27;11(1):57-66. doi: 10.36469/001c.91991. eCollection 2024.
9
Validation of the Enhanced Recovery after Surgery (ERAS) society recommendations for liver surgery: a prospective, observational study.
Hepatobiliary Surg Nutr. 2023 Feb 28;12(1):20-36. doi: 10.21037/hbsn-21-294. Epub 2022 Feb 9.
10
The Role of Pre-Treatment Traumatic Stress Symptoms in Adolescent Substance Use Treatment Outcomes.
Subst Use Misuse. 2023;58(4):551-559. doi: 10.1080/10826084.2023.2177960. Epub 2023 Feb 10.

本文引用的文献

1
A Boosting Algorithm for Estimating Generalized Propensity Scores with Continuous Treatments.
J Causal Inference. 2015 Mar 1;3(1):25-40. doi: 10.1515/jci-2014-0022. Epub 2014 Aug 1.
2
The Use of Propensity Scores for Nonrandomized Designs With Clustered Data.
Multivariate Behav Res. 2011 May 31;46(3):514-43. doi: 10.1080/00273171.2011.569395.
3
Improving propensity score estimators' robustness to model misspecification using super learner.
Am J Epidemiol. 2015 Jan 15;181(2):108-19. doi: 10.1093/aje/kwu253. Epub 2014 Dec 16.
6
Teacher-child relationships and academic achievement: a multilevel propensity score model approach.
J Sch Psychol. 2013 Oct;51(5):611-24. doi: 10.1016/j.jsp.2013.05.001. Epub 2013 May 24.
8
Propensity scores used for analysis of cluster randomized trials with selection bias: a simulation study.
Stat Med. 2013 Aug 30;32(19):3357-72. doi: 10.1002/sim.5795. Epub 2013 Mar 31.
9
Propensity score weighting with multilevel data.
Stat Med. 2013 Aug 30;32(19):3373-87. doi: 10.1002/sim.5786. Epub 2013 Mar 24.
10
Causal inference with a quantitative exposure.
Stat Methods Med Res. 2016 Feb;25(1):315-35. doi: 10.1177/0962280212452333. Epub 2012 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验