Suppr超能文献

细胞内的相关随机游走:肌动蛋白分支与微管动力学

Correlated random walks inside a cell: actin branching and microtubule dynamics.

作者信息

Buttenschön Andreas, Edelstein-Keshet Leah

机构信息

Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.

出版信息

J Math Biol. 2019 Oct;79(5):1953-1972. doi: 10.1007/s00285-019-01416-6. Epub 2019 Aug 17.

Abstract

Correlated random walks (CRW) have been explored in many settings, most notably in the motion of individuals in a swarm or flock. But some subcellular systems such as growth or disassembly of bio-polymers can also be described with similar models and understood using related mathematical methods. Here we consider two examples of growing cytoskeletal elements, actin and microtubules. We use CRW or generalized CRW-like PDEs to model their spatial distributions. In each case, the linear models can be reduced to a Telegrapher's equation. A combination of explicit solutions (in one case) and numerical solutions (in the other) demonstrates that the approach to steady state can be accompanied by (decaying) waves.

摘要

相关随机游走(CRW)已在许多场景中得到研究,最显著的是在群体或鱼群中个体的运动。但一些亚细胞系统,如生物聚合物的生长或解聚,也可以用类似的模型来描述,并使用相关的数学方法来理解。在这里,我们考虑两个生长中的细胞骨架成分的例子,肌动蛋白和微管。我们使用CRW或广义的类似CRW的偏微分方程来模拟它们的空间分布。在每种情况下,线性模型都可以简化为电报方程。(在一种情况下)显式解和(在另一种情况下)数值解的结合表明,达到稳态的过程可能伴随着(衰减的)波。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验