Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 81377, Munich, Germany.
Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany.
J Neurol. 2019 Sep;266(Suppl 1):52-61. doi: 10.1007/s00415-019-09488-6. Epub 2019 Aug 17.
Intravenous contrast agent-enhanced magnetic resonance imaging of the endolymphatic space (ELS) of the inner ear permits direct, in-vivo, non-invasive visualization of labyrinthine structures and thus verification of endolymphatic hydrops (ELH). However, current volumetric assessment approaches lack normalization. The aim of this study was to develop a probabilistic atlas of the inner ear's bony labyrinth as a first step towards an automated and reproducible volume-based quantification of the ELS. The study included three different datasets: a source dataset (D1) to build the probabilistic atlas and two testing sets (D2, D3). D1 included 24 right-handed patients (12 females; mean age 51.5 ± 3.9 years) and D2 5 patients (3 female; mean age 48.8 ± 5.01 years) with vestibular migraine without ELH or any measurable vestibular deficits. D3 consisted of five patients (one female; mean age 46 ± 5.2 years) suffering from unilateral Menière's disease and ELH. Data processing comprised three steps: preprocessing using an affine and deformable fusion registration pipeline, computation of an atlas for the left and right inner ear using a label-assisted approach, and validation of the atlas based on localizing and segmenting previously unseen ears. The three-dimensional probabilistic atlas of the inner ear's bony labyrinth consisted of the internal acoustic meatus and inner ears (including cochlea, otoliths, and semicircular canals) for both sides separately. The analyses showed a high level of agreement between the atlas-based segmentation and the manual gold standard with an overlap of 89% for the right ear and 86% for the left ear (measured by dice scores). This probabilistic in vivo atlas of the human inner ear's bony labyrinth and thus of the inner ear's total fluid space for both ears represents a necessary step towards a normalized, easily reproducible and reliable volumetric quantification of the perilymphatic and endolymphatic space in view of MR volumetric assessment of ELH. The proposed atlas lays the groundwork for state-of-the-art approaches (e.g., deep learning) and will be provided to the scientific community.
内耳内淋巴管(ELS)的静脉内对比增强磁共振成像允许对迷路结构进行直接、体内、非侵入性可视化,从而验证内淋巴积水(ELH)。然而,当前的容积评估方法缺乏归一化。本研究的目的是开发内耳骨迷路的概率图谱,作为基于自动和可重复的 ELS 容积定量的第一步。该研究包括三个不同的数据集:一个源数据集(D1)用于构建概率图谱,以及两个测试集(D2、D3)。D1 包括 24 名右利手患者(12 名女性;平均年龄 51.5±3.9 岁)和 5 名患有前庭性偏头痛但无 ELH 或任何可测量的前庭功能障碍的患者(D2)(3 名女性;平均年龄 48.8±5.01 岁)。D3 由 5 名患有单侧梅尼埃病和 ELH 的患者组成(1 名女性;平均年龄 46±5.2 岁)。数据处理包括三个步骤:使用仿射和变形融合注册流水线进行预处理,使用标签辅助方法计算左、右内耳图谱,以及基于先前未见耳朵的定位和分割验证图谱。内耳骨迷路的三维概率图谱包括内部听觉道和双侧内耳(包括耳蜗、耳石和半规管)。分析显示,基于图谱的分割与手动金标准之间具有高度一致性,右耳的重叠率为 89%,左耳为 86%(以骰子分数衡量)。这个双侧内耳骨迷路的概率图谱,也就是双侧内耳总液空间的图谱,是对 ELH 的磁共振容积评估进行内淋巴和外淋巴容积定量的标准化、易于重复和可靠方法的必要步骤。所提出的图谱为最先进的方法(例如深度学习)奠定了基础,并将提供给科学界。