Ahmadi Seyed-Ahmad, Frei Johann, Vivar Gerome, Dieterich Marianne, Kirsch Valerie
German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
Front Neurol. 2022 May 11;13:663200. doi: 10.3389/fneur.2022.663200. eCollection 2022.
MR-based high-resolution volumetric quantification methods of the endolymphatic hydrops (ELH) are highly dependent on a reliable segmentation of the inner ear's total fluid space (TFS). This study aimed to develop a novel open-source inner ear TFS segmentation approach using a dedicated deep learning (DL) model.
The model was based on a V-Net architecture (IE-Vnet) and a multivariate (MR scans: T1, T2, FLAIR, SPACE) training dataset (D1, 179 consecutive patients with peripheral vestibulocochlear syndromes). Ground-truth TFS masks were generated in a semi-manual, atlas-assisted approach. IE-Vnet model segmentation performance, generalizability, and robustness to domain shift were evaluated on four heterogenous test datasets (D2-D5, = 4 × 20 ears).
The IE-Vnet model predicted TFS masks with consistently high congruence to the ground-truth in all test datasets (Dice overlap coefficient: 0.9 ± 0.02, Hausdorff maximum surface distance: 0.93 ± 0.71 mm, mean surface distance: 0.022 ± 0.005 mm) without significant difference concerning side (two-sided Wilcoxon signed-rank test, >0.05), or dataset (Kruskal-Wallis test, >0.05; Mann-Whitney U, FDR-corrected, all >0.2). Prediction took 0.2 s, and was 2,000 times faster than a state-of-the-art atlas-based segmentation method.
IE-Vnet TFS segmentation demonstrated high accuracy, robustness toward domain shift, and rapid prediction times. Its output works seamlessly with a previously published open-source pipeline for automatic ELS segmentation. IE-Vnet could serve as a core tool for high-volume trans-institutional studies of the inner ear. Code and pre-trained models are available free and open-source under https://github.com/pydsgz/IEVNet.
基于磁共振成像(MR)的内淋巴积水(ELH)高分辨率容积定量方法高度依赖于内耳总液腔(TFS)的可靠分割。本研究旨在使用专用深度学习(DL)模型开发一种新型开源内耳TFS分割方法。
该模型基于V-Net架构(IE-Vnet)和多变量(MR扫描:T1、T2、FLAIR、SPACE)训练数据集(D1,179例连续外周前庭蜗神经综合征患者)。通过半自动、图谱辅助方法生成真实TFS掩码。在四个异质测试数据集(D2-D5,=4×20耳)上评估IE-Vnet模型的分割性能、通用性和对域转移的鲁棒性。
IE-Vnet模型在所有测试数据集中预测的TFS掩码与真实情况具有始终如一的高度一致性(骰子重叠系数:0.9±0.02,豪斯多夫最大表面距离:0.93±0.71毫米,平均表面距离:0.022±0.005毫米),在患侧(双侧威尔科克森符号秩检验,>0.05)或数据集方面无显著差异(克鲁斯卡尔-沃利斯检验,>0.05;曼-惠特尼U检验,经FDR校正,均>0.2)。预测耗时0.2秒,比基于图谱的先进分割方法快2000倍。
IE-Vnet TFS分割显示出高精度、对域转移的鲁棒性和快速预测时间。其输出与先前发布的用于自动ELH分割的开源管道无缝配合。IE-Vnet可作为内耳大容量跨机构研究的核心工具。代码和预训练模型可在https://github.com/pydsgz/IEVNet上免费开源获取。