Suppr超能文献

基于多组学特征的儿童下呼吸道感染所致继发性哮喘的早期识别:一项回顾性队列研究

Early Recognition of Secondary Asthma Caused by Lower Respiratory Tract Infection in Children Based on Multi-Omics Signature: A Retrospective Cohort Study.

作者信息

Rao Zhihui, Zhang Shuqin, Xu Wenlin, Huang Pan, Xiao Xiaofei, Hu Xiuxiu

机构信息

Department of Pediatric Comprehensive Internal Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, People's Republic of China.

出版信息

Int J Gen Med. 2024 Dec 14;17:6229-6241. doi: 10.2147/IJGM.S498965. eCollection 2024.

Abstract

OBJECTIVE

To explore the types of pathogens causing lower respiratory tract infections (LTRIs) in children and construction of a predictive model for monitoring secondary asthma caused by LTRIs.

METHODS

Seven hundred and seventy-five children with LTRIs treated from June 2017 to July 2024 were selected as research subjects. Bacterial isolation and culture were performed on all children, and drug sensitivity tests were conducted on the isolated pathogens; And according to whether the child developed secondary asthma during treatment, they were divided into asthma group (n = 116) and non-asthma group (n = 659); Using logistic regression model to analyze the risk factors affecting secondary asthma in children with LTRIs, and establishing machine learning (ie nomogram and decision tree) prediction models; Using ROC curve analysis machine learning algorithms to predict AUC values, sensitivity, and specificity of secondary asthma in children with LTRIs.

RESULTS

792 pathogenic bacteria were isolated from 775 children with LTRIs through bacterial culture, including 261 Gram positive bacteria (32.95%) and 531 Gram negative bacteria (67.05%). Logistic regression model analysis showed that Glycerophospholipids, Sphingolipids and radiomics characteristics were risk factors for secondary asthma in children with LTRIs (P < 0.05). The AUC, sensitivity, and specificity of nomogram prediction for secondary asthma in children with LTRIs were 0.817(95CI: 0.760-0.874), 82.3%, and 76.6%, respectively; The AUC of decision tree prediction for secondary asthma in children with LTRIs is 0.926(95% CI: 0.869-0.983), with a sensitivity of 96.7% and a specificity of 87.8%.

CONCLUSION

LTRIs in children are mainly caused by Staphylococcus aureus, Streptococcus pneumoniae, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa; In addition, machine learning combined with multi-omics prediction models has shown good ability in predicting LTRIs combined with asthma, providing a non-invasive and effective method for clinical decision-making.

摘要

目的

探讨儿童下呼吸道感染(LTRIs)的病原体类型,并构建监测LTRIs所致继发性哮喘的预测模型。

方法

选取2017年6月至2024年7月收治的775例LTRIs患儿作为研究对象。对所有患儿进行细菌分离培养,并对分离出的病原体进行药敏试验;根据患儿治疗期间是否发生继发性哮喘,将其分为哮喘组(n = 116)和非哮喘组(n = 659);采用逻辑回归模型分析影响LTRIs患儿继发性哮喘的危险因素,并建立机器学习(即列线图和决策树)预测模型;采用ROC曲线分析机器学习算法预测LTRIs患儿继发性哮喘的AUC值、敏感性和特异性。

结果

通过细菌培养从775例LTRIs患儿中分离出792株病原菌,其中革兰阳性菌261株(32.95%),革兰阴性菌531株(67.05%)。逻辑回归模型分析显示,甘油磷脂、鞘脂和影像组学特征是LTRIs患儿继发性哮喘的危险因素(P < 0.05)。列线图预测LTRIs患儿继发性哮喘的AUC、敏感性和特异性分别为0.817(95CI:0.760 - 0.874)、82.3%和76.6%;决策树预测LTRIs患儿继发性哮喘的AUC为0.926(95%CI:0.869 - 0.983),敏感性为96.7%,特异性为87.8%。

结论

儿童LTRIs主要由金黄色葡萄球菌、肺炎链球菌、表皮葡萄球菌、大肠埃希菌、肺炎克雷伯菌和铜绿假单胞菌引起;此外,机器学习结合多组学预测模型在预测LTRIs合并哮喘方面显示出良好能力,为临床决策提供了一种非侵入性的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac6/11656193/fee5de26fed2/IJGM-17-6229-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验