文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

社交媒体记录了人口统计学和地区性的身体活动情况。

Social media captures demographic and regional physical activity.

作者信息

Cesare Nina, Nguyen Quynh C, Grant Christan, Nsoesie Elaine O

机构信息

Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA.

Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA.

出版信息

BMJ Open Sport Exerc Med. 2019 Jul 14;5(1):e000567. doi: 10.1136/bmjsem-2019-000567. eCollection 2019.


DOI:10.1136/bmjsem-2019-000567
PMID:31423323
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6678033/
Abstract

OBJECTIVES: We examined the use of data from social media for surveillance of physical activity prevalence in the USA. METHODS: We obtained data from the social media site Twitter from April 2015 to March 2016. The data consisted of 1 382 284 geotagged physical activity tweets from 481 146 users (55.7% men and 44.3% women) in more than 2900 counties. We applied machine learning and statistical modelling to demonstrate sex and regional variations in preferred exercises, and assessed the association between reports of physical activity on Twitter and population-level inactivity prevalence from the US Centers for Disease Control and Prevention. RESULTS: The association between physical inactivity tweet patterns and physical activity prevalence varied by sex and region. Walking was the most popular physical activity for both men and women across all regions (15.94% (95% CI 15.85% to 16.02%) and 18.74% (95% CI 18.64% to 18.88%) of tweets, respectively). Men and women mentioned performing gym-based activities at approximately the same rates (4.68% (95% CI 4.63% to 4.72%) and 4.13% (95% CI 4.08% to 4.18%) of tweets, respectively). CrossFit was most popular among men (14.91% (95% CI 14.52% to 15.31%)) among gym-based tweets, whereas yoga was most popular among women (26.66% (95% CI 26.03% to 27.19%)). Men mentioned engaging in higher intensity activities than women. Overall, counties with higher physical activity tweets also had lower leisure-time physical inactivity prevalence for both sexes. CONCLUSIONS: The regional-specific and sex-specific activity patterns captured on Twitter may allow public health officials to identify changes in health behaviours at small geographical scales and to design interventions best suited for specific populations.

摘要

目的:我们研究了利用社交媒体数据监测美国身体活动流行情况。 方法:我们获取了2015年4月至2016年3月期间社交媒体网站推特的数据。这些数据包括来自2900多个县的481146名用户(55.7%为男性,44.3%为女性)的1382284条带有地理标记的身体活动推文。我们应用机器学习和统计建模来展示不同性别和地区在偏好运动方面的差异,并评估推特上身体活动报告与美国疾病控制与预防中心公布的人群层面不活动流行率之间的关联。 结果:不活动推文模式与身体活动流行率之间的关联因性别和地区而异。在所有地区,步行是男性和女性最受欢迎的身体活动(推文分别占15.94%(95%可信区间15.85%至16.02%)和18.74%(95%可信区间18.64%至18.88%))。男性和女性提及进行健身房活动的比例大致相同(推文分别占4.68%(95%可信区间4.63%至4.72%)和4.13%(95%可信区间4.08%至4.18%))。在基于健身房的推文中,CrossFit在男性中最受欢迎(14.91%(95%可信区间14.52%至15.31%)),而瑜伽在女性中最受欢迎(26.66%(95%可信区间26.03%至27.19%))。男性提及参与的活动强度高于女性。总体而言,身体活动推文较多的县,男女休闲时间身体不活动的流行率也较低。 结论:推特上捕捉到的特定地区和特定性别的活动模式可能使公共卫生官员能够在小地理尺度上识别健康行为的变化,并设计最适合特定人群的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70b/6678033/9cfd7643f665/bmjsem-2019-000567f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70b/6678033/3a273b1c6bf8/bmjsem-2019-000567f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70b/6678033/7221d62f5a78/bmjsem-2019-000567f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70b/6678033/9cfd7643f665/bmjsem-2019-000567f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70b/6678033/3a273b1c6bf8/bmjsem-2019-000567f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70b/6678033/7221d62f5a78/bmjsem-2019-000567f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70b/6678033/9cfd7643f665/bmjsem-2019-000567f03.jpg

相似文献

[1]
Social media captures demographic and regional physical activity.

BMJ Open Sport Exerc Med. 2019-7-14

[2]
Building a National Neighborhood Dataset From Geotagged Twitter Data for Indicators of Happiness, Diet, and Physical Activity.

JMIR Public Health Surveill. 2016-10-17

[3]
Monitoring Physical Activity Levels Using Twitter Data: Infodemiology Study.

J Med Internet Res. 2019-6-3

[4]
Geotagged US Tweets as Predictors of County-Level Health Outcomes, 2015-2016.

Am J Public Health. 2017-11

[5]
Use of Social Media, Search Queries, and Demographic Data to Assess Obesity Prevalence in the United States.

Palgrave Commun. 2019

[6]
Applying Multiple Data Collection Tools to Quantify Human Papillomavirus Vaccine Communication on Twitter.

J Med Internet Res. 2016-12-5

[7]
Temporal and Location Variations, and Link Categories for the Dissemination of COVID-19-Related Information on Twitter During the SARS-CoV-2 Outbreak in Europe: Infoveillance Study.

J Med Internet Res. 2020-8-28

[8]
Association Between HIV-Related Tweets and HIV Incidence in the United States: Infodemiology Study.

J Med Internet Res. 2020-6-24

[9]
Mapping tweets to a known disease epidemiology; a case study of Lyme disease in the United Kingdom and Republic of Ireland.

J Biomed Inform. 2019

[10]
Online Influence and Sentiment of Fitness Tweets: Analysis of Two Million Fitness Tweets.

JMIR Public Health Surveill. 2017-10-31

引用本文的文献

[1]
Methods and Annotated Data Sets Used to Predict the Gender and Age of Twitter Users: Scoping Review.

J Med Internet Res. 2024-3-15

[2]
Diet during the COVID-19 pandemic: An analysis of Twitter data.

Patterns (N Y). 2022-8-12

[3]
Best Practices on Big Data Analytics to Address Sex-Specific Biases in Our Understanding of the Etiology, Diagnosis, and Prognosis of Diseases.

Annu Rev Biomed Data Sci. 2022-8-10

[4]
Analytic Advances in Social Networks and Health in the Twenty-First Century.

J Health Soc Behav. 2022-6

[5]
Can parkland mitigate mental health burden imposed by the COVID-19? A national study in China.

Urban For Urban Green. 2022-1

[6]
Monitoring Information-Seeking Patterns and Obesity Prevalence in Africa With Internet Search Data: Observational Study.

JMIR Public Health Surveill. 2021-4-29

[7]
Social Media as a Research Tool (SMaaRT) for Risky Behavior Analytics: Methodological Review.

JMIR Public Health Surveill. 2020-11-30

[8]
Use of Social Media, Search Queries, and Demographic Data to Assess Obesity Prevalence in the United States.

Palgrave Commun. 2019

本文引用的文献

[1]
Assessment of Physical Activity by Wearable Technology During Rehabilitation After Cardiac Surgery: Explorative Prospective Monocentric Observational Cohort Study.

JMIR Mhealth Uhealth. 2019-1-31

[2]
Association of Physical Activity With Income, Race/Ethnicity, and Sex Among Adolescents and Young Adults in the United States: Findings From the National Health and Nutrition Examination Survey, 2007-2016.

JAMA Pediatr. 2018-8-1

[3]
Persistent socioeconomic disparities in cardiovascular risk factors and health in the United States: Medical Expenditure Panel Survey 2002-2013.

Atherosclerosis. 2017-12-8

[4]
Geotagged US Tweets as Predictors of County-Level Health Outcomes, 2015-2016.

Am J Public Health. 2017-11

[5]
Large-scale physical activity data reveal worldwide activity inequality.

Nature. 2017-7-20

[6]
Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data.

Int J Environ Res Public Health. 2017-6-15

[7]
Computer-Mediated Social Support for Physical Activity: A Content Analysis.

Health Educ Behav. 2017-4-17

[8]
Utilizing Crowdsourced Data for Studies of Cycling and Air Pollution Exposure: A Case Study Using Strava Data.

Int J Environ Res Public Health. 2017-3-8

[9]
Building a National Neighborhood Dataset From Geotagged Twitter Data for Indicators of Happiness, Diet, and Physical Activity.

JMIR Public Health Surveill. 2016-10-17

[10]
Physical activity-time to take it seriously and regularly.

Lancet. 2016-9-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索