Suppr超能文献

多期肾双能 CT 虚拟平扫与真实平扫图像增强定量的比较:一项体模研究。

Comparison of enhancement quantification from virtual unenhanced images to true unenhanced images in multiphase renal Dual-Energy computed tomography: A phantom study.

机构信息

MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas.

Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Texas.

出版信息

J Appl Clin Med Phys. 2019 Aug;20(8):171-179. doi: 10.1002/acm2.12685.

Abstract

Multiphase computed tomography (CT) exams are a commonly used imaging technique for the diagnosis of renal lesions and involve the acquisition of a true unenhanced (TUE) series followed by one or more postcontrast series. The difference in CT number of the mass in pre- and postcontrast images is used to quantify enhancement, which is an important criterion used for diagnosis. This study sought to assess the feasibility of replacing TUE images with virtual unenhanced (VUE) images derived from Dual-Energy CT datasets in renal CT exams. Eliminating TUE image acquisition could reduce patient dose and improve clinical efficiency. A rapid kVp-switching CT scanner was used to assess enhancement accuracy when using VUE compared to TUE images as the baseline for enhancement calculations across a wide range of clinical scenarios simulated in a phantom study. Three phantoms were constructed to simulate small, medium, and large patients, each with varying lesion size and location. Nonenhancing cystic lesions were simulated using distilled water. Intermediate (10-20 HU [Hounsfield units]) and positively enhancing masses (≥20 HU) were simulated by filling the spherical inserts in each phantom with varied levels of iodinated contrast mixed with a blood surrogate. The results were analyzed using Bayesian hierarchical models. Posterior probabilities were used to classify enhancement measured using VUE compared to TUE images as significantly less, not significantly different, or significantly higher. Enhancement measured using TUE images was considered the ground truth in this study. For simulation of nonenhancing renal lesions, enhancement values were not significantly different when using VUE versus TUE images, with posterior probabilities ranging from 0.23-0.56 across all phantom sizes and an associated specificity of 100%. However, for simulation of intermediate and positively enhancing lesions significant differences were observed, with posterior probabilities < 0.05, indicating significantly lower measured enhancement when using VUE versus TUE images. Positively enhancing masses were categorized accurately, with a sensitivity of 91.2%, when using VUE images as the baseline. For all scenarios where iodine was present, VUE-based enhancement measurements classified lesions with a sensitivity of 43.2%, a specificity of 100%, and an accuracy of 78.1%. Enhancement calculated using VUE images proved to be feasible for classifying nonenhancing and highly enhancing lesions. However, differences in measured enhancement for simulation of intermediately enhancing lesions demonstrated that replacement of TUE with VUE images may not be advisable for renal CT exams.

摘要

多期 CT 检查是诊断肾脏病变的常用影像学技术,包括采集真实未增强(TUE)系列,然后进行一次或多次增强后系列检查。使用 TUE 前后的 CT 号差值来量化增强程度,这是诊断的重要标准。本研究旨在评估在肾脏 CT 检查中用双能 CT 数据集生成的虚拟未增强(VUE)图像代替 TUE 图像的可行性。消除 TUE 图像采集可以降低患者剂量并提高临床效率。本研究使用快速 kVp 切换 CT 扫描仪,评估在虚拟未增强(VUE)图像作为增强计算基准的情况下,与 TUE 图像相比,在模拟的各种临床情况下的增强准确性。本研究构建了三个体模来模拟小、中、大患者,每个体模的病变大小和位置都不同。使用蒸馏水模拟非增强性囊性病变。通过将不同水平的碘造影剂与血液替代物混合填充到每个体模的球形插入物中,来模拟中间(10-20 HU [亨氏单位])和阳性增强肿块(≥20 HU)。使用贝叶斯层次模型分析结果。使用后验概率将使用 VUE 测量的增强值与使用 TUE 图像测量的增强值进行分类,分类为明显减少、无明显差异或明显增加。在本研究中,使用 TUE 图像测量的增强值被认为是真实值。对于模拟非增强性肾病变,使用 VUE 与 TUE 图像时,增强值无明显差异,后验概率在所有体模大小范围内为 0.23-0.56,特异性为 100%。然而,对于模拟中间和阳性增强病变,观察到显著差异,后验概率<0.05,表明使用 VUE 与 TUE 图像时,测量的增强值明显降低。使用 VUE 图像可以准确分类阳性增强肿块,灵敏度为 91.2%。对于所有存在碘的情况下,基于 VUE 的增强测量将病变分类的灵敏度为 43.2%,特异性为 100%,准确性为 78.1%。VUE 图像上的增强计算证明可用于分类非增强和高度增强的病变。然而,对于模拟中间增强病变的测量增强值的差异表明,对于肾脏 CT 检查,用 VUE 图像替代 TUE 图像可能不是明智的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff35/6698809/8e11eba5e891/ACM2-20-171-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验