Nemati Ahlam, Shadpour Sasan, Querciagrossa Lara, Mori Taizo, Zannoni Claudio, Hegmann Torsten
Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44242 , United States.
Dipartimento di Chimica Industriale "Toso Montanari" and INSTM , Università di Bologna , Viale Risorgimento 4 , IT-40136 Bologna , Italy.
ACS Nano. 2019 Sep 24;13(9):10312-10326. doi: 10.1021/acsnano.9b03787. Epub 2019 Aug 21.
The creation and transmission of chirality in molecular systems is a well-known, widely applied notion. Our understanding of how the chirality of nanomaterials can be controlled, measured, transmitted through space, and applied is less well understood. Dynamic assemblies for chiral sensing or metamaterials engineered from chiral nanomaterials require exact methods to determine transmission and amplification of nanomaterial chirality through space. We report the synthesis of a series of gold nanorods (GNRs) with a constant aspect ratio of ∼4.3 capped with -symmetric, axially chiral binaphthyl thiols, preparation of dispersions in the nematic liquid crystal 5CB, measurements of the helical pitch, and the determination of the helical twisting power as well as the average distance between the chiral nanomaterial additives. By comparison to the neat organic chiral derivatives, we demonstrate how the amplification of chirality facilitated by GNRs decorated with chiral molecules can be used to clearly distinguish the chiral induction strength of a homologous series of binaphthyl derivatives, differing only in the length of the nontethered aliphatic chain, in the induced chiral nematic liquid crystal phase. Considering systematic errors in sample preparation and optical measurements, these chiral molecules would otherwise be deemed identical with respect to chiral induction. Notably, we find some of the highest ever-reported values of the helical twisting power. We further support our experimentally derived arguments of a more comprehensive understanding of chirality transfer by calculations of a suitable pseudoscalar chirality indicator.
分子系统中手性的产生和传递是一个广为人知且应用广泛的概念。而我们对于纳米材料的手性如何被控制、测量、在空间中传递以及应用的理解则相对较少。用于手性传感的动态组装体或由手性纳米材料设计的超材料需要精确的方法来确定纳米材料手性在空间中的传递和放大。我们报告了一系列纵横比约为4.3且恒定的金纳米棒(GNRs)的合成,这些金纳米棒用对称的、轴向手性的联萘硫醇封端,在向列型液晶5CB中制备分散体,测量螺旋螺距,并确定螺旋扭曲能力以及手性纳米材料添加剂之间的平均距离。通过与纯有机手性衍生物进行比较,我们展示了用手性分子修饰的GNRs所促进的手性放大如何能够清晰地区分仅在非连接脂肪族链长度上有所不同的一系列联萘衍生物在诱导手性向列相液晶相中的手性诱导强度。考虑到样品制备和光学测量中的系统误差,否则这些手性分子在诱导手性方面会被认为是相同的。值得注意的是,我们发现了一些有史以来报道的最高螺旋扭曲能力值。我们通过计算一个合适的赝标量手性指标,进一步支持了我们从实验得出的关于更全面理解手性转移的观点。