Suppr超能文献

使用Charlson合并症指数强化的机器学习模型预测局限性前列腺癌复发相关死亡

Prediction of Recurrence-associated Death from Localized Prostate Cancer with a Charlson Comorbidity Index-reinforced Machine Learning Model.

作者信息

Lin Yi-Ting, Lee Michael Tian-Shyug, Huang Yen-Chun, Liu Chih-Kuang, Li Yi-Tien, Chen Mingchih

机构信息

Department of Urology, St. Joseph Hospital, Yunlin County, 63241, Taiwan.

Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City 24205, Taiwan.

出版信息

Open Med (Wars). 2019 Aug 14;14:593-606. doi: 10.1515/med-2019-0067. eCollection 2019.

Abstract

Research has failed to resolve the dilemma experienced by localized prostate cancer patients who must choose between radical prostatectomy (RP) and external beam radiotherapy (RT). Because the Charlson Comorbidity Index (CCI) is a measurable factor that affects survival events, this research seeks to validate the potential of the CCI to improve the accuracy of various prediction models. Thus, we employed the Cox proportional hazard model and machine learning methods, including random forest (RF) and support vector machine (SVM), to model the data of medical records in the National Health Insurance Research Database (NHIRD). In total, 8581 individuals were enrolled, of whom 4879 had received RP and 3702 had received RT. Patients in the RT group were older and exhibited higher CCI scores and higher incidences of some CCI items. Moderate-to-severe liver disease, dementia, congestive heart failure, chronic pulmonary disease, and cerebrovascular disease all increase the risk of overall death in the Cox hazard model. The CCI-reinforced SVM and RF models are 85.18% and 81.76% accurate, respectively, whereas the SVM and RF models without the use of the CCI are relatively less accurate, at 75.81% and 74.83%, respectively. Therefore, CCI and some of its items are useful predictors of overall and prostate-cancer-specific survival and could constitute valuable features for machine-learning modeling.

摘要

对于局限性前列腺癌患者而言,他们必须在根治性前列腺切除术(RP)和外照射放疗(RT)之间做出选择,而相关研究未能解决他们所面临的困境。由于查尔森合并症指数(CCI)是一个影响生存事件的可测量因素,本研究旨在验证CCI在提高各种预测模型准确性方面的潜力。因此,我们采用Cox比例风险模型以及包括随机森林(RF)和支持向量机(SVM)在内的机器学习方法,对国民健康保险研究数据库(NHIRD)中的医疗记录数据进行建模。总共纳入了8581名个体,其中4879人接受了RP,3702人接受了RT。RT组的患者年龄更大,CCI评分更高,一些CCI项目的发生率也更高。在Cox风险模型中,中重度肝病、痴呆、充血性心力衰竭、慢性肺病和脑血管病都会增加全因死亡风险。强化了CCI的SVM和RF模型的准确率分别为85.18%和81.76%,而未使用CCI的SVM和RF模型的准确率相对较低,分别为75.81%和74.83%。因此,CCI及其一些项目是全因生存和前列腺癌特异性生存的有用预测指标,并且可以构成机器学习建模的有价值特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b92d/6698054/1bff9abede35/med-14-593-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验