Suppr超能文献

用于老年冠状动脉旁路移植术患者特征选择和死亡率预测的机器学习技术

Machine-Learning Techniques for Feature Selection and Prediction of Mortality in Elderly CABG Patients.

作者信息

Huang Yen-Chun, Li Shao-Jung, Chen Mingchih, Lee Tian-Shyug, Chien Yu-Ning

机构信息

Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City 24205, Taiwan.

Artificial Intelligence Development Center, Fu Jen Catholic University, New Taipei City 242062, Taiwan.

出版信息

Healthcare (Basel). 2021 May 7;9(5):547. doi: 10.3390/healthcare9050547.

Abstract

Coronary artery bypass surgery grafting (CABG) is a commonly efficient treatment for coronary artery disease patients. Even if we know the underlying disease, and advancing age is related to survival, there is no research using the one year before surgery and operation-associated factors as predicting elements. This research used different machine-learning methods to select the features and predict older adults' survival (more than 65 years old). This nationwide population-based cohort study used the National Health Insurance Research Database (NHIRD), the largest and most complete dataset in Taiwan. We extracted the data of older patients who had received their first CABG surgery criteria between January 2008 and December 2009 ( = 3728), and we used five different machine-learning methods to select the features and predict survival rates. The results show that, without variable selection, XGBoost had the best predictive ability. Upon selecting XGBoost and adding the CHA2DS score, acute pancreatitis, and acute kidney failure for further predictive analysis, MARS had the best prediction performance, and it only needed 10 variables. This study's advantages are that it is innovative and useful for clinical decision making, and machine learning could achieve better prediction with fewer variables. If we could predict patients' survival risk before a CABG operation, early prevention and disease management would be possible.

摘要

冠状动脉旁路移植术(CABG)是治疗冠心病患者常用的有效方法。即使我们了解潜在疾病,且高龄与生存率相关,但尚无研究将手术前一年及手术相关因素作为预测指标。本研究采用不同的机器学习方法来选择特征并预测老年人(65岁以上)的生存率。这项基于全国人口的队列研究使用了台湾最大且最完整的数据集——国民健康保险研究数据库(NHIRD)。我们提取了2008年1月至2009年12月期间首次接受CABG手术标准的老年患者的数据(n = 3728),并使用五种不同的机器学习方法来选择特征并预测生存率。结果表明,在不进行变量选择的情况下,XGBoost具有最佳预测能力。在选择XGBoost并添加CHA2DS评分、急性胰腺炎和急性肾衰竭进行进一步预测分析时,MARS具有最佳预测性能,且仅需10个变量。本研究的优点在于具有创新性且对临床决策有用,机器学习可以用较少的变量实现更好的预测。如果我们能够在CABG手术前预测患者的生存风险,那么早期预防和疾病管理将成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5425/8151160/dbc53295be2b/healthcare-09-00547-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验