ACS Appl Mater Interfaces. 2019 Sep 18;11(37):34084-34090. doi: 10.1021/acsami.9b10746. Epub 2019 Sep 3.
Energy barrier formed at a metal/semiconductor interface is a critical factor determining the performance of nanoelectronic devices. Although diverse methods for reducing the Schottky barrier height (SBH) via interface engineering have been developed, it is still difficult to achieve both an ultralow SBH and a low dependence on the contact metals. In this study, a novel structure, namely, a metal/transition-metal dichalcogenide (TMD) interlayer (IL)/dielectric IL/semiconductor (MTDS) structure, was developed to overcome these issues. Molybdenum disulfide (MoS) is a promising TMD IL material owing to its interface characteristics, which yields a low SBH and reduces the reliance on contact metals. Moreover, an ultralow SBH is achieved via the insertion of an ultrathin ZnO layer between MoS and a semiconductor, thereby inducing an n-type doping effect on the MoS IL and forming an interface dipole in the favorable direction at the ZnO IL/semiconductor interfaces. Consequently, the lowest SBH (0.07 eV) and a remarkable improvement in the reverse current density (by a factor of approximately 5400) are achieved, with a wide room for contact-metal dependence. This study experimentally and theoretically validates the effect of the proposed MTDS structure, which can be a key technique for next-generation nanoelectronics.
金属/半导体界面形成的能垒是决定纳米电子器件性能的关键因素。尽管已经开发出了多种通过界面工程降低肖特基势垒高度(SBH)的方法,但仍然难以实现超低 SBH 和对接触金属的低依赖性。在这项研究中,开发了一种新颖的结构,即金属/过渡金属二硫属化物(TMD)夹层(IL)/介电 IL/半导体(MTDS)结构,以克服这些问题。二硫化钼(MoS)是一种很有前途的 TMD IL 材料,因为它的界面特性可以产生低 SBH 并降低对接触金属的依赖。此外,通过在 MoS 和半导体之间插入一层超薄的 ZnO 层,可以实现超低 SBH,从而在 MoS IL 上诱导 n 型掺杂效应,并在 ZnO IL/半导体界面上形成有利方向的界面偶极子。因此,实现了最低的 SBH(0.07 eV)和显著提高的反向电流密度(约 5400 倍),并具有广泛的接触金属依赖性空间。这项研究从实验和理论上验证了所提出的 MTDS 结构的效果,它可能成为下一代纳米电子学的关键技术。