UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum national d'Histoire naturelle, 75005 Paris, France; UMR 7208 CNRS/MNHN/UPMC/IRD Biologie des Organismes Aquatiques et Ecosystèmes, Sorbonne Universités, Muséum national d'Histoire naturelle, 75005 Paris, France.
UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum national d'Histoire naturelle, 75005 Paris, France.
Sci Total Environ. 2020 Nov 25;745:140878. doi: 10.1016/j.scitotenv.2020.140878. Epub 2020 Jul 19.
Molluscs defend themselves against predation and environmental stressors through the possession of mineralized shells. Mussels are widely used to predict the effects of abiotic factors such as salinity and pH on marine calcifiers in the context of changing ocean conditions. Shell matrix proteins are part of the molecular control regulating the biomineralization processes underpinning shell production. Under changing environmental conditions, differential expression of these proteins leads to the phenotypic plasticity of shells seen in many mollusc species. Low salinity decreases the availability of calcium and inorganic carbon in seawater and consequently energetic constraints often lead to thin, small and fragile shells in Mytilid mussels inhabiting Baltic Sea. To understand how the modulation of shell matrix proteins alters biomineralization, we compared the shell proteomes of mussels living under full marine conditions in the North Sea to those living in the low saline Baltic Sea. Modulation of proteins comprising the Mytilus biomineralization tool kit is observed. These data showed a relative increase in chitin related proteins, decrease in SD-rich, GA-rich shell matrix proteins indicating that altered protein scaffolding and mineral nucleation lead to impaired shell microstructures influencing shell resistance in Baltic Mytilid mussels. Interestingly, proteins with immunity domains in the shell matrix are also found to be modulated. Shell traits such as periostracum thickness, organic content and fracture resistance qualitatively correlates with the modulation of SMPs in Mytilid mussels providing key insights into control of biomineralization at molecular level in the context of changing marine conditions.
软体动物通过拥有矿化的外壳来防御捕食者和环境胁迫。贻贝被广泛用于预测盐度和 pH 等非生物因素对海洋钙化生物在海洋环境变化条件下的影响。壳基质蛋白是分子控制的一部分,调节着贝壳生产的生物矿化过程。在不断变化的环境条件下,这些蛋白质的差异表达导致了许多软体动物物种贝壳出现表型可塑性。低盐度降低了海水中钙和无机碳的可用性,因此能量限制往往导致生活在波罗的海的贻贝产生薄、小而脆弱的贝壳。为了了解壳基质蛋白的调节如何改变生物矿化,我们比较了生活在北海完全海洋条件下和生活在低盐度波罗的海的贻贝的壳蛋白质组。观察到组成贻贝生物矿化工具包的蛋白质的调节。这些数据显示与壳相关的蛋白质相对增加,富含 SD 和 GA 的壳基质蛋白减少,表明蛋白质支架的改变和矿物成核导致贝壳微结构受损,影响了波罗的海贻贝的贝壳抗性。有趣的是,壳基质中具有免疫结构域的蛋白质也被发现被调节。贝壳特征,如壳层厚度、有机含量和抗断裂性,与贻贝中 SMP 的调节定性相关,为在不断变化的海洋条件下从分子水平控制生物矿化提供了关键见解。