Suppr超能文献

瞬时交联动力学优化基因簇相互作用。

Transient crosslinking kinetics optimize gene cluster interactions.

机构信息

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.

Department of Mathematics, University at Buffalo, State University of New York, Buffalo, New York, United States of America.

出版信息

PLoS Comput Biol. 2019 Aug 21;15(8):e1007124. doi: 10.1371/journal.pcbi.1007124. eCollection 2019 Aug.

Abstract

Our understanding of how chromosomes structurally organize and dynamically interact has been revolutionized through the lens of long-chain polymer physics. Major protein contributors to chromosome structure and dynamics are condensin and cohesin that stochastically generate loops within and between chains, and entrap proximal strands of sister chromatids. In this paper, we explore the ability of transient, protein-mediated, gene-gene crosslinks to induce clusters of genes, thereby dynamic architecture, within the highly repeated ribosomal DNA that comprises the nucleolus of budding yeast. We implement three approaches: live cell microscopy; computational modeling of the full genome during G1 in budding yeast, exploring four decades of timescales for transient crosslinks between 5kbp domains (genes) in the nucleolus on Chromosome XII; and, temporal network models with automated community (cluster) detection algorithms applied to the full range of 4D modeling datasets. The data analysis tools detect and track gene clusters, their size, number, persistence time, and their plasticity (deformation). Of biological significance, our analysis reveals an optimal mean crosslink lifetime that promotes pairwise and cluster gene interactions through "flexible" clustering. In this state, large gene clusters self-assemble yet frequently interact (merge and separate), marked by gene exchanges between clusters, which in turn maximizes global gene interactions in the nucleolus. This regime stands between two limiting cases each with far less global gene interactions: with shorter crosslink lifetimes, "rigid" clustering emerges with clusters that interact infrequently; with longer crosslink lifetimes, there is a dissolution of clusters. These observations are compared with imaging experiments on a normal yeast strain and two condensin-modified mutant cell strains. We apply the same image analysis pipeline to the experimental and simulated datasets, providing support for the modeling predictions.

摘要

我们对染色体结构组织和动态相互作用的理解已经通过长链聚合物物理的视角得到了彻底的改变。对染色体结构和动力学有重大贡献的主要蛋白质是凝聚素和黏合素,它们随机地在链内和链间产生环,并捕获姐妹染色单体的近端链。在本文中,我们探讨了瞬时、蛋白介导的基因-基因交联在诱导高度重复核糖体 DNA (组成酵母出芽核仁)内基因簇的能力,从而动态构建核仁内的结构。我们实施了三种方法:活细胞显微镜;在酵母的 G1 期间对全基因组进行计算建模,探索核仁中染色体 XII 上的 5kbp (基因)之间的瞬时交联在四个十年的时间尺度内的情况;以及,应用自动社区(聚类)检测算法的时间网络模型,应用于全范围的 4D 建模数据集。数据分析工具检测和跟踪基因簇及其大小、数量、持续时间和可塑性(变形)。具有生物学意义的是,我们的分析揭示了一个最佳的平均交联寿命,通过“灵活”聚类促进了成对和聚类基因相互作用。在这种状态下,大的基因簇自我组装,但经常相互作用(合并和分离),以基因在簇之间的交换为标志,这反过来又最大化了核仁中的全局基因相互作用。这种状态介于两种具有更少全局基因相互作用的极限情况之间:交联寿命较短时,出现“刚性”聚类,聚类之间相互作用不频繁;交联寿命较长时,聚类溶解。这些观察结果与正常酵母菌株和两个凝聚素修饰的突变细胞菌株的成像实验进行了比较。我们将相同的图像分析管道应用于实验和模拟数据集,为建模预测提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22c3/6730938/8e622944cf03/pcbi.1007124.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验