Suppr超能文献

酵母中拓扑关联基因组域的形态和功能。

Form and function of topologically associating genomic domains in budding yeast.

机构信息

Department of Applied Physics, Stanford University, Stanford, CA 94305.

Department of Genetics, Harvard Medical School, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3061-E3070. doi: 10.1073/pnas.1612256114. Epub 2017 Mar 27.

Abstract

The genome of metazoan cells is organized into topologically associating domains (TADs) that have similar histone modifications, transcription level, and DNA replication timing. Although similar structures appear to be conserved in fission yeast, computational modeling and analysis of high-throughput chromosome conformation capture (Hi-C) data have been used to argue that the small, highly constrained budding yeast chromosomes could not have these structures. In contrast, herein we analyze Hi-C data for budding yeast and identify 200-kb scale TADs, whose boundaries are enriched for transcriptional activity. Furthermore, these boundaries separate regions of similarly timed replication origins connecting the long-known effect of genomic context on replication timing to genome architecture. To investigate the molecular basis of TAD formation, we performed Hi-C experiments on cells depleted for the Forkhead transcription factors, Fkh1 and Fkh2, previously associated with replication timing. Forkhead factors do not regulate TAD formation, but do promote longer-range genomic interactions and control interactions between origins near the centromere. Thus, our work defines spatial organization within the budding yeast nucleus, demonstrates the conserved role of genome architecture in regulating DNA replication, and identifies a molecular mechanism specifically regulating interactions between pericentric origins.

摘要

真核细胞的基因组组织成拓扑关联域 (TADs),它们具有相似的组蛋白修饰、转录水平和 DNA 复制时间。尽管类似的结构似乎在裂殖酵母中被保守,但计算建模和高通量染色体构象捕获 (Hi-C) 数据的分析已被用于争辩说,小型、高度受限的出芽酵母染色体不可能具有这些结构。相比之下,在这里,我们分析了出芽酵母的 Hi-C 数据,并鉴定了 200kb 规模的 TAD,其边界富含转录活性。此外,这些边界将复制起点相似的时间连接区分开来,将基因组背景对复制时间的长期影响与基因组结构联系起来。为了研究 TAD 形成的分子基础,我们在叉头转录因子 Fkh1 和 Fkh2 耗尽的细胞中进行了 Hi-C 实验,这些因子先前与复制时间有关。叉头因子不调节 TAD 的形成,但促进了更长的基因组相互作用,并控制着着丝粒附近的起始点之间的相互作用。因此,我们的工作定义了出芽酵母核内的空间组织,证明了基因组结构在调节 DNA 复制中的保守作用,并确定了一种专门调节着丝粒周围起始点之间相互作用的分子机制。

相似文献

1
Form and function of topologically associating genomic domains in budding yeast.酵母中拓扑关联基因组域的形态和功能。
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3061-E3070. doi: 10.1073/pnas.1612256114. Epub 2017 Mar 27.

引用本文的文献

本文引用的文献

3
Bipartite structure of the inactive mouse X chromosome.失活小鼠X染色体的二分结构。
Genome Biol. 2015 Aug 7;16(1):152. doi: 10.1186/s13059-015-0728-8.
6

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验