Suppr超能文献

回到未来:端粒相关因素与遗传毒性应激之间的密切且不断发展的联系。

Back to the future: The intimate and evolving connection between telomere-related factors and genotoxic stress.

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128.

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128

出版信息

J Biol Chem. 2019 Oct 4;294(40):14803-14813. doi: 10.1074/jbc.AW119.008145. Epub 2019 Aug 21.

Abstract

The conversion of circular genomes to linear chromosomes during molecular evolution required the invention of telomeres. This entailed the acquisition of factors necessary to fulfill two new requirements: the need to fully replicate terminal DNA sequences and the ability to distinguish chromosome ends from damaged DNA. Here we consider the multifaceted functions of factors recruited to perpetuate and stabilize telomeres. We discuss recent theories for how telomere factors evolved from existing cellular machineries and examine their engagement in nontelomeric functions such as DNA repair, replication, and transcriptional regulation. We highlight the remarkable versatility of protection of telomeres 1 (POT1) proteins that was fueled by gene duplication and divergence events that occurred independently across several eukaryotic lineages. Finally, we consider the relationship between oxidative stress and telomeres and the enigmatic role of telomere-associated proteins in mitochondria. These findings point to an evolving and intimate connection between telomeres and cellular physiology and the strong drive to maintain chromosome integrity.

摘要

在分子进化过程中,环状基因组向线性染色体的转化需要端粒的发明。这需要获得满足两个新要求所必需的因素:充分复制末端 DNA 序列的能力,以及区分染色体末端和受损 DNA 的能力。在这里,我们考虑了被招募来维持和稳定端粒的因素的多方面功能。我们讨论了端粒因子如何从现有细胞机制进化而来的最新理论,并研究了它们在非端粒功能中的作用,如 DNA 修复、复制和转录调控。我们强调了保护端粒 1(POT1)蛋白的惊人多功能性,这是由基因复制和分化事件驱动的,这些事件在几个真核生物谱系中独立发生。最后,我们考虑了氧化应激和端粒之间的关系,以及端粒相关蛋白在线粒体中的神秘作用。这些发现表明端粒与细胞生理学之间存在不断发展和密切的联系,以及强烈的保持染色体完整性的驱动力。

相似文献

2
How shelterin protects mammalian telomeres.端粒保护蛋白复合体如何保护哺乳动物的端粒。
Annu Rev Genet. 2008;42:301-34. doi: 10.1146/annurev.genet.41.110306.130350.
3
Telomere dynamics in mammals.哺乳动物中的端粒动态变化
Genome Dyn. 2012;7:29-45. doi: 10.1159/000337128. Epub 2012 Jun 25.
6
POT1-TPP1 telomere length regulation and disease.POT1-TPP1端粒长度调控与疾病
Comput Struct Biotechnol J. 2020 Jul 3;18:1939-1946. doi: 10.1016/j.csbj.2020.06.040. eCollection 2020.
8
Fingering the ends: how to make new telomeres.触摸末端:如何制造新的端粒。
Cell. 2003 May 30;113(5):552-4. doi: 10.1016/s0092-8674(03)00397-0.

引用本文的文献

5
Quantification of 8- in Plant Telomeres.植物端粒中 8- 的定量。
Int J Mol Sci. 2022 Apr 30;23(9):4990. doi: 10.3390/ijms23094990.
7
Change and HOAP for the best.变则通,HOAP 则更好。
Elife. 2020 Dec 22;9:e64945. doi: 10.7554/eLife.64945.
8
Getting to grips with circular chromosomes.解析环状染色体。
Elife. 2020 Aug 5;9:e60150. doi: 10.7554/eLife.60150.

本文引用的文献

7
Oxidative stress, aging, and diseases.氧化应激、衰老和疾病。
Clin Interv Aging. 2018 Apr 26;13:757-772. doi: 10.2147/CIA.S158513. eCollection 2018.
8
Evolving Linear Chromosomes and Telomeres: A C-Strand-Centric View.线性染色体和端粒的进化:以 C 链为中心的观点。
Trends Biochem Sci. 2018 May;43(5):314-326. doi: 10.1016/j.tibs.2018.02.008. Epub 2018 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验