Suppr超能文献

对纯粹学习的批判,以及人工神经网络可以从动物大脑中学到什么。

A critique of pure learning and what artificial neural networks can learn from animal brains.

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.

出版信息

Nat Commun. 2019 Aug 21;10(1):3770. doi: 10.1038/s41467-019-11786-6.

Abstract

Artificial neural networks (ANNs) have undergone a revolution, catalyzed by better supervised learning algorithms. However, in stark contrast to young animals (including humans), training such networks requires enormous numbers of labeled examples, leading to the belief that animals must rely instead mainly on unsupervised learning. Here we argue that most animal behavior is not the result of clever learning algorithms-supervised or unsupervised-but is encoded in the genome. Specifically, animals are born with highly structured brain connectivity, which enables them to learn very rapidly. Because the wiring diagram is far too complex to be specified explicitly in the genome, it must be compressed through a "genomic bottleneck". The genomic bottleneck suggests a path toward ANNs capable of rapid learning.

摘要

人工神经网络 (ANNs) 经历了一场革命,这得益于更好的监督学习算法。然而,与年幼的动物(包括人类)形成鲜明对比的是,训练这样的网络需要大量标记的示例,这导致人们认为动物必须主要依赖无监督学习。在这里,我们认为大多数动物行为不是聪明的学习算法(监督或无监督)的结果,而是编码在基因组中。具体来说,动物生来就具有高度结构化的大脑连接,这使它们能够非常快速地学习。由于布线图过于复杂,无法在基因组中明确指定,因此必须通过“基因组瓶颈”进行压缩。基因组瓶颈为能够快速学习的人工神经网络提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2542/6704116/811568e5357d/41467_2019_11786_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验