Vale R D, Hotani H
Department of Pharmacology, University of California, San Francisco, 94143.
J Cell Biol. 1988 Dec;107(6 Pt 1):2233-41. doi: 10.1083/jcb.107.6.2233.
Certain intracellular organelles such as the endoplasmic reticulum (Terasaki, M., L. B. Chen, and K. Fujiwara. 1986. J. Cell Biol. 103:1557-1568) and lysosomes (Swanson, J., A. Bushnell, and S. C. Silverstein. Proc. Natl. Acad. Sci. USA. 84:1921-1925) form tubular networks that are closely aligned with microtubules. Here we describe the formation of polygonal networks composed of interconnected membrane tubules that occurs when a preparation of microtubule affinity-purified squid kinesin is combined with microtubules and ATP on a glass surface. The membrane, which is a minor contaminant in the microtubule affinity-purified kinesin preparation, binds to microtubules translocating along kinesin-coated glass surfaces. Force exerted by kinesin upon the microtubule is transmitted to the membrane and a tubular extension of the membrane is produced. As the membrane tubule elongates, membrane tension exerts an opposing force upon the translocating microtubule that can alter its direction of movement by dissociating or partially dissociating the microtubule from the kinesin-coated surface. Membrane tubules that come in contact appear to fuse with one another, and thus give rise to two-dimensional polygonal networks of tubules that have similar features to endoplasmic reticulum networks in cells. Artificial liposomes composed of dimyristoylphosphatidylcholine and yolk phosphatidylglycerol also form stable tubular structures when subjected to shear forces, but do not interact with microtubules or form polygonal networks, suggesting that such phenomena may require membrane-associated proteins. These findings indicate that kinesin generates sufficient force to form tubular membrane extensions in vitro and suggest that this microtubule-based motility protein may also be responsible for creating tubular membrane networks within cells.
某些细胞内细胞器,如内质网(Terasaki, M., L. B. Chen, and K. Fujiwara. 1986. J. Cell Biol. 103:1557 - 1568)和溶酶体(Swanson, J., A. Bushnell, and S. C. Silverstein. Proc. Natl. Acad. Sci. USA. 84:1921 - 1925)会形成与微管紧密排列的管状网络。在此,我们描述了一种多边形网络的形成过程,当将微管亲和纯化的鱿鱼驱动蛋白制剂与微管及ATP在玻璃表面混合时,会形成由相互连接的膜管组成的多边形网络。该膜是微管亲和纯化驱动蛋白制剂中的微量污染物,它会结合到沿着驱动蛋白包被的玻璃表面移动的微管上。驱动蛋白施加在微管上的力会传递到膜上,并产生膜的管状延伸。随着膜管伸长,膜张力会对移动的微管施加相反的力,这可能通过使微管与驱动蛋白包被的表面解离或部分解离来改变其移动方向。相互接触的膜管似乎会相互融合,从而形成二维的管状多边形网络,其具有与细胞内内质网网络相似的特征。由二肉豆蔻酰磷脂酰胆碱和蛋黄磷脂酰甘油组成的人工脂质体在受到剪切力时也会形成稳定的管状结构,但不会与微管相互作用或形成多边形网络,这表明此类现象可能需要膜相关蛋白。这些发现表明,驱动蛋白在体外能产生足够的力来形成管状膜延伸,并表明这种基于微管的运动蛋白可能也负责在细胞内创建管状膜网络。