Waterman-Storer C M, Salmon E D
Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA.
Curr Biol. 1998 Jul 2;8(14):798-806. doi: 10.1016/s0960-9822(98)70321-5.
The microtubule-dependent motility of endoplasmic reticulum (ER) tubules is fundamental to the structure and function of the ER. From in vitro assays, three mechanisms for ER tubule motility have arisen: the 'membrane sliding mechanism' in which ER tubules slide along microtubules using microtubule motor activity; the 'microtubule movement mechanism' in which ER attaches to moving microtubules; and the 'tip attachment complex (TAC) mechanism' in which ER tubules attach to growing plus ends of microtubules.
We have used multi-wavelength time-lapse epifluorescence microscopy to image the dynamic interactions between microtubules (by microinjection of X-rhodamine-labeled tubulin) and ER (by DiOC6(3) staining) in living cells to determine which mechanism contributes to the formation and motility of ER tubules in migrating cells in vivo. Newly forming ER tubules extended only in a microtubule plus-end direction towards the cell periphery: 31.4% by TACs and 68.6% by the membrane sliding mechanism. ER tubules, statically attached to microtubules, moved towards the cell center with microtubules through actomyosin-based retrograde flow. TACs did not change microtubule growth and shortening velocities, but reduced transitions between these states. Treatment of cells with 100 nM nocodazole to inhibit plus-end microtubule dynamics demonstrated that TAC motility required microtubule assembly dynamics, whereas membrane sliding and retrograde-flow-driven ER motility did not.
Both plus-end-directed membrane sliding and TAC mechanisms make significant contributions to the motility of ER towards the periphery of living cells, whereas ER removal from the lamella is powered by actomyosin-based retrograde flow of microtubules with ER attached as cargo. TACs in the ER modulate plus-end microtubule dynamics.
内质网(ER)小管依赖微管的运动性对于内质网的结构和功能至关重要。从体外实验中,出现了三种内质网小管运动的机制:“膜滑动机制”,即内质网小管利用微管运动活性沿着微管滑动;“微管运动机制”,即内质网附着于移动的微管;以及“尖端附着复合体(TAC)机制”,即内质网小管附着于微管不断生长的正端。
我们使用多波长延时落射荧光显微镜对活细胞中微管(通过显微注射X - 罗丹明标记的微管蛋白)和内质网(通过DiOC6(3)染色)之间的动态相互作用进行成像,以确定哪种机制有助于体内迁移细胞中内质网小管的形成和运动。新形成的内质网小管仅沿微管正端方向向细胞周边延伸:31.4%通过TACs机制,68.6%通过膜滑动机制。静态附着于微管的内质网小管通过基于肌动球蛋白的逆行流随微管向细胞中心移动。TACs不会改变微管的生长和缩短速度,但会减少这些状态之间的转变。用100 nM诺考达唑处理细胞以抑制微管正端动力学表明,TAC运动需要微管组装动力学,而膜滑动和逆行流驱动的内质网运动则不需要。
正端定向的膜滑动和TAC机制都对内质网向活细胞周边的运动做出了重要贡献,而从内质网片层移除内质网则由附着有内质网作为货物的微管基于肌动球蛋白的逆行流驱动。内质网中的TACs调节微管正端动力学。