Suppr超能文献

一种计算方法,用于识别在脑组织中协调表达的血细胞表达的帕金森病生物标志物。

A computational approach to identify blood cell-expressed Parkinson's disease biomarkers that are coordinately expressed in brain tissue.

机构信息

School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia; Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.

Department of Computer Science and Engineering, Green University of Bangladesh, Bangladesh.

出版信息

Comput Biol Med. 2019 Oct;113:103385. doi: 10.1016/j.compbiomed.2019.103385. Epub 2019 Aug 9.

Abstract

Identification of genes whose regulation of expression is functionally similar in both brain tissue and blood cells could in principle enable monitoring of significant neurological traits and disorders by analysis of blood samples. We thus employed transcriptional analysis of pathologically affected tissues, using agnostic approaches to identify overlapping gene functions and integrating this transcriptomic information with expression quantitative trait loci (eQTL) data. Here, we estimate the correlation of gene expression in the top-associated cis-eQTLs of brain tissue and blood cells in Parkinson's Disease (PD). We introduced quantitative frameworks to reveal the complex relationship of various biasing genetic factors in PD, a neurodegenerative disease. We examined gene expression microarray and RNA-Seq datasets from human brain and blood tissues from PD-affected and control individuals. Differentially expressed genes (DEG) were identified for both brain and blood cells to determine common DEG overlaps. Based on neighborhood-based benchmarking and multilayer network topology approaches we then developed genetic associations of factors with PD. Overlapping DEG sets underwent gene enrichment using pathway analysis and gene ontology methods, which identified candidate common genes and pathways. We identified 12 significantly dysregulated genes shared by brain and blood cells, which were validated using dbGaP (gene SNP-disease linkage) database for gold-standard benchmarking of their significance in disease processes. Ontological and pathway analyses identified significant gene ontology and molecular pathways that indicate PD progression. In sum, we found possible novel links between pathological processes in brain tissue and blood cells by examining cell pathway commonalities, corroborating these associations using well validated datasets. This demonstrates that for brain-related pathologies combining gene expression analysis and blood cell cis-eQTL is a potentially powerful analytical approach. Thus, our methodologies facilitate data-driven approaches that can advance knowledge of disease mechanisms and may, with clinical validation, enable prediction of neurological dysfunction using blood cell transcript profiling.

摘要

通过分析血液样本,可以识别在脑组织和血细胞中表达调控具有功能相似性的基因,从而能够对重要的神经特征和疾病进行监测。因此,我们使用病理性病变组织的转录分析,采用非特定方法来识别重叠的基因功能,并将这种转录组信息与表达数量性状基因座(eQTL)数据进行整合。在这里,我们估计了帕金森病(PD)中大脑组织和血细胞中顶级关联顺式-eQTL 基因表达的相关性。我们引入了定量框架,以揭示 PD 等神经退行性疾病中各种偏向遗传因素的复杂关系。我们检查了来自受 PD 影响和对照个体的人类大脑和血液组织的基因表达微阵列和 RNA-Seq 数据集。为大脑和血细胞确定了差异表达基因(DEG),以确定共同的 DEG 重叠。然后,我们基于基于邻居的基准测试和多层网络拓扑方法,开发了与 PD 相关的因素的遗传关联。重叠的 DEG 集使用途径分析和基因本体论方法进行基因富集,从而确定候选共同基因和途径。我们确定了 12 个在大脑和血细胞中都明显失调的基因,使用 dbGaP(基因 SNP-疾病关联)数据库进行黄金标准基准测试,以验证其在疾病过程中的重要性。本体论和途径分析确定了显著的基因本体论和分子途径,表明 PD 进展。总之,通过检查细胞途径的共性,我们发现了脑组织和血细胞中病理过程之间的可能新联系,并用经过充分验证的数据集证实了这些关联。这表明,对于与大脑相关的病理学,将基因表达分析和血细胞 cis-eQTL 结合起来是一种潜在强大的分析方法。因此,我们的方法学为基于数据的方法提供了便利,这些方法可以增进对疾病机制的了解,并且在经过临床验证后,可能能够使用血细胞转录谱预测神经功能障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验