Suppr超能文献

基于核稀疏表示的皮肤病变分割与分类模型。

Kernel sparse representation based model for skin lesions segmentation and classification.

机构信息

Faculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.

出版信息

Comput Methods Programs Biomed. 2019 Dec;182:105038. doi: 10.1016/j.cmpb.2019.105038. Epub 2019 Aug 16.

Abstract

BACKGROUND AND OBJECTIVES

Melanoma is a dangerous kind of skin disease with a high death rate, and its prevalence has increased rapidly in recent years. Diagnosis of melanoma in a primary phase can be helpful for its cure. Due to costs for dermatology, we need an automatic system to diagnose melanoma through lesion images.

METHODS

Here, we propose a sparse representation based method for segmentation and classification of lesion images. The main idea of our framework is based on a kernel sparse representation, which produces discriminative sparse codes to represent features in a high-dimensional feature space. Our novel formulation for discriminative kernel sparse coding jointly learns a kernel-based dictionary and a linear classifier. We also present an adaptive K-SVD algorithm for kernel dictionary and classifier learning.

RESULTS

We test our approach for both segmentation and classification tasks. The evaluation results on both dermoscopic and digital datasets demonstrate our approach to be competitive as compared to the available state-of-the-art methods, with the advantage of not needing any pre-processing.

CONCLUSIONS

Our method is insensitive to noise and image conditions and can be used effectively for challenging skin lesions. Our approach is so extensive to be adapted to various medical image segmentations.

摘要

背景与目的

黑色素瘤是一种死亡率很高的危险皮肤疾病,近年来其发病率迅速上升。在早期阶段诊断黑色素瘤有助于其治愈。由于皮肤科的费用,我们需要一个自动系统通过病变图像来诊断黑色素瘤。

方法

在这里,我们提出了一种基于稀疏表示的病变图像分割和分类方法。我们框架的主要思想基于核稀疏表示,它生成判别稀疏码来表示高维特征空间中的特征。我们新颖的判别核稀疏编码公式联合学习基于核的字典和线性分类器。我们还提出了一种用于核字典和分类器学习的自适应 K-SVD 算法。

结果

我们在皮肤镜和数字数据集上测试了我们的方法,用于分割和分类任务。与现有的最先进方法相比,评估结果表明我们的方法具有竞争力,并且具有无需任何预处理的优势。

结论

我们的方法对噪声和图像条件不敏感,可有效用于具有挑战性的皮肤病变。我们的方法非常广泛,可以适应各种医学图像分割。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验