文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

重新思考卷积分类器中的皮肤损伤分割。

Rethinking Skin Lesion Segmentation in a Convolutional Classifier.

机构信息

Florida Atlantic University, Boca Raton, FL, USA.

出版信息

J Digit Imaging. 2018 Aug;31(4):435-440. doi: 10.1007/s10278-017-0026-y.


DOI:10.1007/s10278-017-0026-y
PMID:29047032
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6113155/
Abstract

Melanoma is a fatal form of skin cancer when left undiagnosed. Computer-aided diagnosis systems powered by convolutional neural networks (CNNs) can improve diagnostic accuracy and save lives. CNNs have been successfully used in both skin lesion segmentation and classification. For reasons heretofore unclear, previous works have found image segmentation to be, conflictingly, both detrimental and beneficial to skin lesion classification. We investigate the effect of expanding the segmentation border to include pixels surrounding the target lesion. Ostensibly, segmenting a target skin lesion will remove inessential information, non-lesion skin, and artifacts to aid in classification. Our results indicate that segmentation border enlargement produces, to a certain degree, better results across all metrics of interest when using a convolutional based classifier built using the transfer learning paradigm. Consequently, preprocessing methods which produce borders larger than the actual lesion can potentially improve classifier performance, more than both perfect segmentation, using dermatologist created ground truth masks, and no segmentation altogether.

摘要

当未被诊断时,黑色素瘤是一种致命形式的皮肤癌。由卷积神经网络 (CNN) 驱动的计算机辅助诊断系统可以提高诊断准确性并拯救生命。CNN 已成功用于皮肤病变分割和分类。由于迄今为止尚不清楚的原因,以前的工作发现图像分割对皮肤病变分类既有不利影响,也有有利影响。我们研究了扩大分割边界以包含目标病变周围像素的效果。表面上,分割目标皮肤病变将去除不必要的信息、非病变皮肤和伪影,以帮助分类。我们的结果表明,当使用基于卷积的分类器时,使用迁移学习范例构建,扩大分割边界会在所有感兴趣的指标上产生一定程度的更好结果。因此,产生大于实际病变边界的预处理方法有可能比使用皮肤科医生创建的地面真实掩模进行完美分割和完全不分割都能提高分类器性能。

相似文献

[1]
Rethinking Skin Lesion Segmentation in a Convolutional Classifier.

J Digit Imaging. 2018-8

[2]
Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.

Comput Methods Programs Biomed. 2018-5-19

[3]
Skin lesion classification with ensembles of deep convolutional neural networks.

J Biomed Inform. 2018-8-10

[4]
Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.

Comput Methods Programs Biomed. 2019-5-15

[5]
Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.

Comput Methods Programs Biomed. 2019-7-8

[6]
Melanoma detection by analysis of clinical images using convolutional neural network.

Annu Int Conf IEEE Eng Med Biol Soc. 2016-8

[7]
Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.

Comput Methods Programs Biomed. 2020-7

[8]
Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding.

Comput Methods Programs Biomed. 2018-11-20

[9]
Automatic lesion border selection in dermoscopy images using morphology and color features.

Skin Res Technol. 2019-3-14

[10]
Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.

IEEE Trans Biomed Eng. 2017-9

引用本文的文献

[1]
Advancements and challenges of artificial intelligence in dermatology: a review of applications and perspectives in China.

Front Digit Health. 2025-8-13

[2]
Medical Image Segmentation with Learning Semantic and Global Contextual Representation.

Diagnostics (Basel). 2022-6-25

[3]
Transfer learning for medical image classification: a literature review.

BMC Med Imaging. 2022-4-13

[4]
Integrating Domain Knowledge into Deep Learning for Skin Lesion Risk Prioritization to Assist Teledermatology Referral.

Diagnostics (Basel). 2021-12-24

[5]
[Artificial intelligence in medicine and gynecology-the wrong track or promise of cure?].

Gynakologe. 2021

[6]
A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images.

PeerJ Comput Sci. 2020-6-29

[7]
Classification of Skin Lesions into Seven Classes Using Transfer Learning with AlexNet.

J Digit Imaging. 2020-10

[8]
Melanoma Skin Cancer Detection Method Based on Adaptive Principal Curvature, Colour Normalisation and Feature Extraction with the ABCD Rule.

J Digit Imaging. 2020-6

[9]
Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm.

Diagnostics (Basel). 2019-7-10

[10]
[Artificial intelligence in medicine-the wrong track or promise of cure?].

HNO. 2019-5

本文引用的文献

[1]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

[2]
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks.

IEEE Trans Med Imaging. 2016-12-21

[3]
Computational methods for the image segmentation of pigmented skin lesions: A review.

Comput Methods Programs Biomed. 2016-7

[4]
Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence.

Biomed Res Int. 2016

[5]
Cancer statistics, 2016.

CA Cancer J Clin. 2016-1-7

[6]
Prevalence and costs of skin cancer treatment in the U.S., 2002-2006 and 2007-2011.

Am J Prev Med. 2015-2

[7]
Years of potential life lost and indirect costs of melanoma and non-melanoma skin cancer: a systematic review of the literature.

Pharmacoeconomics. 2011-10

[8]
Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting.

Br J Dermatol. 2008-9

[9]
The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy.

J Am Acad Dermatol. 2007-1

[10]
Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma.

Lancet Oncol. 2001-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索