Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil.
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil.
J Mol Graph Model. 2024 May;128:108721. doi: 10.1016/j.jmgm.2024.108721. Epub 2024 Jan 30.
The identification of protein-ligand interactions plays a pivotal role in elucidating biological processes and discovering potential bioproducts. Harnessing the capabilities of computational methods in drug discovery, we introduce an innovative Inverted Virtual Screening (IVS) pipeline. This pipeline Integrated molecular dynamics and docking analyses to ensure that protein structures are not only energetically favorable but also representative of stable conformations. The primary objective of this pipeline is to automate and streamline the analysis of protein-ligand interactions at both genomic and transcriptomic scales. In the contemporary post-genomic era, high-throughput computational screening for bioproducts, biological systems, and therapeutic drugs has become a cornerstone practice. This approach offers the promise of cost-effectiveness, time efficiency, and optimization of laboratory work. Nevertheless, a notable deficiency persists in the availability of efficient pipelines capable of automating the virtual screening process, seamlessly integrating input and output, and leveraging the full potential of open-source tools. To bridge this critical gap, we have developed a versatile pipeline known as BioProtIS. This tool seamlessly integrates a suite of state-of-the-art tools, including Modeller, AlphaFold, Gromacs, FPOCKET, and AutoDock Vina, thus facilitating the streamlined docking of ligands with an expansive repertoire of proteins sourced from genomes and transcriptomes, and substrates. To assess the pipeline's performance, we employed the transcriptomes of Cereus jamacaru (a cactus species) and Aspisoma lineatum (firefly), along with the genome of Homo sapiens. This integration not only improves the accuracy of ligand-protein interactions by minimizing replicability deviations but also optimizes the discovery process by enabling the simultaneous evaluation of multiple substrates. Furthermore, our pipeline accommodates distinct testing scenarios, such as blind docking or site-specific targeting, which are invaluable in applications ranging from drug repositioning to the exploration of new allosteric binding sites and toxicity assessments. BioProtIS has been designed with modularity at its core. This inherent flexibility empowers users to make custom modifications directly within the source code, tailoring the pipeline to their specific research needs. Moreover, it lays the foundation for seamless integration of diverse docking algorithms in future iterations, promising ongoing advancements in the field of computational biology. This pipeline is available for free distribution and can be download at: https://github.com/BBMDO/BioProtIS.
蛋白质 - 配体相互作用的鉴定在阐明生物过程和发现潜在的生物产物方面起着关键作用。我们利用药物发现中的计算方法的能力,引入了一种创新的反向虚拟筛选 (IVS) 管道。该管道集成了分子动力学和对接分析,以确保蛋白质结构不仅在能量上有利,而且代表稳定的构象。该管道的主要目标是在基因组和转录组规模上自动化和简化蛋白质 - 配体相互作用的分析。在当代后基因组时代,高通量计算筛选生物产物、生物系统和治疗药物已成为一种基石实践。这种方法具有成本效益、时间效率和优化实验室工作的承诺。然而,在能够自动化虚拟筛选过程、无缝集成输入和输出以及充分利用开源工具潜力的高效管道方面仍然存在显著的不足。为了弥合这一关键差距,我们开发了一种名为 BioProtIS 的多功能管道。该工具无缝集成了一系列最先进的工具,包括 Modeller、AlphaFold、Gromacs、FPOCKET 和 AutoDock Vina,从而促进了配体与来自基因组和转录组的广泛蛋白质库和底物的流畅对接。为了评估该管道的性能,我们使用了 Cereus jamacaru(一种仙人掌物种)和 Aspisoma lineatum(萤火虫)的转录组以及 Homo sapiens 的基因组。这种集成不仅通过最小化可重复性偏差来提高配体 - 蛋白质相互作用的准确性,而且通过允许同时评估多个底物来优化发现过程。此外,我们的管道还适应了不同的测试场景,例如盲目对接或特定部位的靶向,这在药物再定位到探索新的变构结合位点和毒性评估等应用中非常有价值。BioProtIS 的设计核心是模块化。这种固有的灵活性使用户能够直接在源代码中进行自定义修改,根据自己的特定研究需求定制管道。此外,它还为未来迭代中不同对接算法的无缝集成奠定了基础,有望推动计算生物学领域的不断发展。该管道可免费分发,并可在以下网址下载:https://github.com/BBMDO/BioProtIS。