IEEE Trans Med Imaging. 2020 Apr;39(4):866-876. doi: 10.1109/TMI.2019.2936500. Epub 2019 Aug 20.
ABUS, or Automated breast ultrasound, is an innovative and promising method of screening for breast examination. Comparing to common B-mode 2D ultrasound, ABUS attains operator-independent image acquisition and also provides 3D views of the whole breast. Nonetheless, reviewing ABUS images is particularly time-intensive and errors by oversight might occur. For this study, we offer an innovative 3D convolutional network, which is used for ABUS for automated cancer detection, in order to accelerate reviewing and meanwhile to obtain high detection sensitivity with low false positives (FPs). Specifically, we offer a densely deep supervision method in order to augment the detection sensitivity greatly by effectively using multi-layer features. Furthermore, we suggest a threshold loss in order to present voxel-level adaptive threshold for discerning cancer vs. non-cancer, which can attain high sensitivity with low false positives. The efficacy of our network is verified from a collected dataset of 219 patients with 614 ABUS volumes, including 745 cancer regions, and 144 healthy women with a total of 900 volumes, without abnormal findings. Extensive experiments demonstrate our method attains a sensitivity of 95% with 0.84 FP per volume. The proposed network provides an effective cancer detection scheme for breast examination using ABUS by sustaining high sensitivity with low false positives. The code is publicly available at https://github.com/nawang0226/abus_code.
自动乳腺超声(ABUS)是一种创新性且有前途的乳腺筛查方法。与常见的二维 B 型超声相比,ABUS 实现了操作人员独立的图像采集,并提供了整个乳房的三维视图。然而,ABUS 图像的审查特别耗时,并且可能会因疏忽而出现错误。在这项研究中,我们提出了一种创新的 3D 卷积网络,用于 ABUS 自动癌症检测,以加速审查并同时获得高检测灵敏度和低假阳性(FP)。具体来说,我们提供了一种密集深度监督方法,通过有效利用多层特征来极大地提高检测灵敏度。此外,我们提出了一种阈值损失,以便为区分癌症与非癌症呈现体素级自适应阈值,从而实现高灵敏度和低假阳性。我们的网络从 219 名患者的 614 个 ABUS 容积的采集数据集进行了验证,其中包括 745 个癌症区域和 144 名无异常发现的健康女性的总共 900 个容积。广泛的实验表明,我们的方法在每个容积 0.84 的 FP 下实现了 95%的灵敏度。该网络通过维持高灵敏度和低假阳性,为使用 ABUS 进行乳腺检查提供了有效的癌症检测方案。该代码可在 https://github.com/nawang0226/abus_code 上公开获取。