文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于双编码器-解码器的结肠镜图像深度息肉分割网络。

Dual encoder-decoder-based deep polyp segmentation network for colonoscopy images.

机构信息

Department of Civil Engineering, University of Manitoba, Winnipeg, R3M 0N2, Canada.

Department of Radiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3A 1R9, Canada.

出版信息

Sci Rep. 2023 Jan 21;13(1):1183. doi: 10.1038/s41598-023-28530-2.


DOI:10.1038/s41598-023-28530-2
PMID:36681776
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9867760/
Abstract

Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model's ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder-decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively.

摘要

通过结肠镜检查检测结直肠息肉是预防结直肠癌的重要手段。然而,该方法本身劳动强度大,容易出现人为错误。随着基于深度学习的方法,特别是卷积神经网络的出现,为提高潜在结直肠癌患者的预后,出现了一种自动检测和分割息肉的方法。息肉分割存在一些问题,如模型过拟合和泛化、边界像素定义不清晰,以及模型捕捉纹理、大小和颜色实际范围的能力。为了解决这些挑战,我们提出了一种名为 Polyp Segmentation Network(PSNet)的双编码器-解码器解决方案。双编码器和解码器都是通过综合结合各种深度学习模块开发的,包括 PS 编码器、变压器编码器、PS 解码器、增强型扩张变压器解码器、部分解码器和合并模块。通过与 5 个现有的息肉数据集进行广泛的比较研究,PSNet 在 mDice 和 mIoU 方面分别达到了 0.863 和 0.797 的优异成绩。使用我们新的修改后的息肉数据集,我们分别获得了 0.941 和 0.897 的 mDice 和 mIoU。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/1e8abd26cd2e/41598_2023_28530_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/a54bbbf4ea43/41598_2023_28530_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/d1ac0b1399c1/41598_2023_28530_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/f07c09373d24/41598_2023_28530_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/43091ded8d05/41598_2023_28530_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/2866e55b49d3/41598_2023_28530_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/ceaf426343a5/41598_2023_28530_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/1e8abd26cd2e/41598_2023_28530_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/a54bbbf4ea43/41598_2023_28530_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/d1ac0b1399c1/41598_2023_28530_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/f07c09373d24/41598_2023_28530_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/43091ded8d05/41598_2023_28530_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/2866e55b49d3/41598_2023_28530_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/ceaf426343a5/41598_2023_28530_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/9867760/1e8abd26cd2e/41598_2023_28530_Fig7_HTML.jpg

相似文献

[1]
Dual encoder-decoder-based deep polyp segmentation network for colonoscopy images.

Sci Rep. 2023-1-21

[2]
PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images.

Comput Biol Med. 2021-1

[3]
Dual-branch multi-information aggregation network with transformer and convolution for polyp segmentation.

Comput Biol Med. 2024-1

[4]
ColonGen: an efficient polyp segmentation system for generalization improvement using a new comprehensive dataset.

Phys Eng Sci Med. 2024-3

[5]
Multi-scale nested UNet with transformer for colorectal polyp segmentation.

J Appl Clin Med Phys. 2024-6

[6]
HSNet: A hybrid semantic network for polyp segmentation.

Comput Biol Med. 2022-11

[7]
Improved dual-aggregation polyp segmentation network combining a pyramid vision transformer with a fully convolutional network.

Biomed Opt Express. 2024-3-26

[8]
An automated detection system for colonoscopy images using a dual encoder-decoder model.

Comput Med Imaging Graph. 2020-9

[9]
DAN-PD: Domain adaptive network with parallel decoder for polyp segmentation.

Comput Med Imaging Graph. 2022-10

[10]
MC-DC: An MLP-CNN Based Dual-path Complementary Network for Medical Image Segmentation.

Comput Methods Programs Biomed. 2023-12

引用本文的文献

[1]
Accurate and robust segmentation of cerebral distal small arteries by DVNet with dual contextual path and vascular attention enhancement.

Quant Imaging Med Surg. 2025-2-1

[2]
A frequency attention-embedded network for polyp segmentation.

Sci Rep. 2025-2-10

[3]
DeepNeXt: a lightweight polyp segmentation algorithm based on multi-scale attention.

Quant Imaging Med Surg. 2024-12-5

[4]
PolySegNet: improving polyp segmentation through swin transformer and vision transformer fusion.

Biomed Eng Lett. 2024-8-20

[5]
HDB-Net: hierarchical dual-branch network for retinal layer segmentation in diseased OCT images.

Biomed Opt Express. 2024-8-19

[6]
Research on defect detection of bottle cap interior based on low-angle and large divergence angle vision system.

PLoS One. 2024

[7]
Artificial intelligence in colonoscopy: from detection to diagnosis.

Korean J Intern Med. 2024-7

[8]
Polypoid Lesion Segmentation Using YOLO-V8 Network in Wireless Video Capsule Endoscopy Images.

Diagnostics (Basel). 2024-2-22

[9]
Polyp Segmentation Using a Hybrid Vision Transformer and a Hybrid Loss Function.

J Imaging Inform Med. 2024-4

[10]
IRv2-Net: A Deep Learning Framework for Enhanced Polyp Segmentation Performance Integrating InceptionResNetV2 and UNet Architecture with Test Time Augmentation Techniques.

Sensors (Basel). 2023-9-7

本文引用的文献

[1]
Attention based multi-scale parallel network for polyp segmentation.

Comput Biol Med. 2022-7

[2]
FANet: A Feedback Attention Network for Improved Biomedical Image Segmentation.

IEEE Trans Neural Netw Learn Syst. 2023-11

[3]
MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation.

IEEE J Biomed Health Inform. 2022-5

[4]
Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning.

IEEE Access. 2021-3-4

[5]
An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy.

Sci Rep. 2020-2-17

[6]
UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation.

IEEE Trans Med Imaging. 2020-6

[7]
Deeply-Supervised Networks With Threshold Loss for Cancer Detection in Automated Breast Ultrasound.

IEEE Trans Med Imaging. 2020-4

[8]
Recalibrating Fully Convolutional Networks With Spatial and Channel "Squeeze and Excitation" Blocks.

IEEE Trans Med Imaging. 2019-2

[9]
A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images.

J Healthc Eng. 2017-7-26

[10]
Integrating Online and Offline Three-Dimensional Deep Learning for Automated Polyp Detection in Colonoscopy Videos.

IEEE J Biomed Health Inform. 2017-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索