Department of Bionanoscience , Kavli Institute of Nanoscience, Delft University of Technology , Van der Maasweg 9 , Delft 2629 HZ , The Netherlands.
Laboratory for Aero and Hydrodynamics , Delft University of Technology , Delft 2628 CD , The Netherlands.
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):33620-33627. doi: 10.1021/acsami.9b09983. Epub 2019 Sep 6.
Cell lipid membranes are the site of vital biological processes, such as motility, trafficking, and sensing, many of which involve mechanical forces. Elucidating the interplay between such bioprocesses and mechanical forces requires the use of tools that apply and measure piconewton-level forces, e.g., optical tweezers. Here, we introduce the combination of optical tweezers with free-standing lipid bilayers, which are fully accessible on both sides of the membrane. In the vicinity of the lipid bilayer, optical trapping would normally be impossible due to optical distortions caused by pockets of the solvent trapped within the membrane. We solve this by drastically reducing the size of these pockets via tuning of the solvent and flow cell material. In the resulting flow cells, lipid nanotubes are straightforwardly pushed or pulled and reach lengths above half a millimeter. Moreover, the controlled pushing of a lipid nanotube with an optically trapped bead provides an accurate and direct measurement of important mechanical properties. In particular, we measure the membrane tension of a free-standing membrane composed of a mixture of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) to be 4.6 × 10 N/m. We demonstrate the potential of the platform for biophysical studies by inserting the cell-penetrating trans-activator of transcription (TAT) peptide in the lipid membrane. The interactions between the TAT peptide and the membrane are found to decrease the value of the membrane tension to 2.1 × 10 N/m. This method is also fully compatible with electrophysiological measurements and presents new possibilities for the study of membrane mechanics and the creation of artificial lipid tube networks of great importance in intra- and intercellular communication.
细胞膜是许多重要生物过程(如运动、运输和感知)的发生部位,其中许多过程都涉及机械力。阐明这些生物过程与机械力之间的相互作用需要使用能够施加和测量皮牛顿级力的工具,例如光学镊子。在这里,我们介绍了将光学镊子与独立的脂质双层结合使用的方法,这种脂质双层的两面都完全可以进入。在脂质双层的附近,由于被膜内溶剂口袋引起的光畸变,通常不可能进行光学捕获。我们通过调节溶剂和流动池材料来显著减小这些口袋的尺寸,从而解决了这个问题。在得到的流动池中,脂质纳米管可以很容易地被推动或拉动,长度可以超过半毫米。此外,通过用光镊捕获的珠粒对脂质纳米管的受控推动,可提供对重要力学性质的准确和直接的测量。特别是,我们测量了由二油酰基磷脂酰胆碱(DOPC)和二棕榈酰基磷脂酰胆碱(DPPC)混合物组成的独立膜的膜张力为 4.6×10 N/m。我们通过将穿透细胞膜的转录激活因子(TAT)肽插入脂质膜中,展示了该平台在生物物理研究中的潜力。TAT 肽与膜之间的相互作用会降低膜张力的值至 2.1×10 N/m。该方法还完全兼容于电生理测量,并为研究膜力学和创建在细胞内和细胞间通讯中具有重要意义的人工脂质管网络提供了新的可能性。