Shin Jaehyeon, Jeong Sang Hyeok, Shon Min Ju
Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
BMB Rep. 2025 Jan;58(1):33-40. doi: 10.5483/BMBRep.2024-0179.
Model membrane systems have emerged as essential platforms for investigating membrane-associated processes in controlled environments, mimicking biological membranes without the complexity of cellular systems. However, integrating these model systems with single-molecule techniques remains challenging due to the fluidity of lipid membranes, including undulations and the lateral mobility of lipids and proteins. This mini-review explores the evolution of various model membranes ranging from black lipid membranes to nanodiscs and giant unilamellar vesicles as they adapt to accommodate electrophysiology, force spectroscopy, and fluorescence microscopy. We highlight recent advancements, including innovations in force spectroscopy and single-molecule imaging using free-standing lipid bilayers, and the development of membrane platforms with tunable composition and curvature for improving fluorescence-based studies of protein dynamics. These integrated approaches have provided deep insights into ion channel function, membrane fusion, protein mechanics, and protein dynamics. We highlight how the synergy between single-molecule techniques and model membranes enhances our understanding of complex cellular processes, paving the way for future discoveries in membrane biology and biophysics. [BMB Reports 2025; 58(1): 33-40].
模型膜系统已成为在可控环境中研究膜相关过程的重要平台,它能模拟生物膜,而无需面对细胞系统的复杂性。然而,由于脂质膜的流动性,包括脂质和蛋白质的波动及横向移动,将这些模型系统与单分子技术相结合仍然具有挑战性。本综述探讨了从黑脂质膜到纳米盘和巨型单层囊泡等各种模型膜的演变,它们不断适应以容纳电生理学、力谱学和荧光显微镜技术。我们重点介绍了近期的进展,包括使用独立脂质双层的力谱学和单分子成像的创新,以及开发具有可调组成和曲率的膜平台以改进基于荧光的蛋白质动力学研究。这些综合方法为离子通道功能、膜融合、蛋白质力学和蛋白质动力学提供了深入见解。我们强调了单分子技术与模型膜之间的协同作用如何增强我们对复杂细胞过程的理解,为膜生物学和生物物理学的未来发现铺平道路。[《BMB报告》2025年;58(1): 33 - 40]