Suppr超能文献

scRCMF:从单细胞转录组中鉴定细胞亚群和过渡状态。

scRCMF: Identification of Cell Subpopulations and Transition States From Single-Cell Transcriptomes.

出版信息

IEEE Trans Biomed Eng. 2020 May;67(5):1418-1428. doi: 10.1109/TBME.2019.2937228. Epub 2019 Aug 23.

Abstract

Single cell technologies provide an unprecedented opportunity to explore the heterogeneity in a biological process at the level of single cells. One major challenge in analyzing single cell data is to identify cell subpopulations, stable cell states, and cells in transition between states. To elucidate the transition mechanisms in cell fate dynamics, it is highly desirable to quantitatively characterize cellular states and intermediate states. Here, we present scRCMF, an unsupervised method that identifies stable cell states and transition cells by adopting a nonlinear optimization model that infers the latent substructures from a gene-cell matrix. We incorporate a random coefficient matrix-based regularization into the standard nonnegative matrix decomposition model to improve the reliability and stability of estimating latent substructures. To quantify the transition capability of each cell, we propose two new measures: single-cell transition entropy (scEntropy) and transition probability (scTP). When applied to two simulated and three published scRNA-seq datasets, scRCMF not only successfully captures multiple subpopulations and transition processes in large-scale data, but also identifies transition states and some known marker genes associated with cell state transitions and subpopulations. Furthermore, the quantity scEntropy is found to be significantly higher for transition cells than other cellular states during the global differentiation, and the scTP predicts the "fate decisions" of transition cells within the transition. The present study provides new insights into transition events during differentiation and development.

摘要

单细胞技术为在单细胞水平上探索生物过程的异质性提供了前所未有的机会。分析单细胞数据的一个主要挑战是识别细胞亚群、稳定的细胞状态以及处于状态转换中的细胞。为了阐明细胞命运动力学中的转变机制,定量描述细胞状态和中间状态是非常理想的。在这里,我们提出了 scRCMF,这是一种无监督的方法,通过采用从基因-细胞矩阵中推断潜在亚结构的非线性优化模型来识别稳定的细胞状态和转变细胞。我们将基于随机系数矩阵的正则化纳入标准的非负矩阵分解模型中,以提高潜在亚结构估计的可靠性和稳定性。为了量化每个细胞的转变能力,我们提出了两个新的度量标准:单细胞转变熵(scEntropy)和转变概率(scTP)。当应用于两个模拟和三个已发表的 scRNA-seq 数据集时,scRCMF 不仅成功地捕获了大规模数据中的多个亚群和转变过程,而且还识别了转变状态和一些与细胞状态转变和亚群相关的已知标记基因。此外,在全局分化过程中,转变细胞的 scEntropy 数量明显高于其他细胞状态,而 scTP 预测了转变细胞在转变过程中的“命运决策”。本研究为分化和发育过程中的转变事件提供了新的见解。

相似文献

引用本文的文献

9
Human Cell Atlas and cell-type authentication for regenerative medicine.人类细胞图谱与再生医学中的细胞类型鉴定
Exp Mol Med. 2020 Sep;52(9):1443-1451. doi: 10.1038/s12276-020-0421-1. Epub 2020 Sep 15.

本文引用的文献

1
A comparison of single-cell trajectory inference methods.单细胞轨迹推断方法比较。
Nat Biotechnol. 2019 May;37(5):547-554. doi: 10.1038/s41587-019-0071-9. Epub 2019 Apr 1.
6
Exploring intermediate cell states through the lens of single cells.通过单细胞视角探索中间细胞状态。
Curr Opin Syst Biol. 2018 Jun;9:32-41. doi: 10.1016/j.coisb.2018.02.009. Epub 2018 Mar 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验