Suppr超能文献

深度可微分随机森林在年龄估计中的应用。

Deep Differentiable Random Forests for Age Estimation.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Feb;43(2):404-419. doi: 10.1109/TPAMI.2019.2937294. Epub 2021 Jan 8.

Abstract

Age estimation from facial images is typically cast as a label distribution learning or regression problem, since aging is a gradual progress. Its main challenge is the facial feature space w.r.t. ages is inhomogeneous, due to the large variation in facial appearance across different persons of the same age and the non-stationary property of aging. In this paper, we propose two Deep Differentiable Random Forests methods, Deep Label Distribution Learning Forest (DLDLF) and Deep Regression Forest (DRF), for age estimation. Both of them connect split nodes to the top layer of convolutional neural networks (CNNs) and deal with inhomogeneous data by jointly learning input-dependent data partitions at the split nodes and age distributions at the leaf nodes. This joint learning follows an alternating strategy: (1) Fixing the leaf nodes and optimizing the split nodes and the CNN parameters by Back-propagation; (2) Fixing the split nodes and optimizing the leaf nodes by Variational Bounding. Two Deterministic Annealing processes are introduced into the learning of the split and leaf nodes, respectively, to avoid poor local optima and obtain better estimates of tree parameters free of initial values. Experimental results show that DLDLF and DRF achieve state-of-the-art performance on three age estimation datasets.

摘要

从面部图像估计年龄通常被视为标签分布学习或回归问题,因为衰老过程是一个渐进的过程。其主要挑战是,由于不同年龄的人脸外观存在较大差异,以及衰老的非平稳性,人脸特征空间与年龄之间存在不均匀性。在本文中,我们提出了两种深度可微分随机森林方法,深度标签分布学习森林(DLDLF)和深度回归森林(DRF),用于年龄估计。它们都将分裂节点连接到卷积神经网络(CNN)的顶层,并通过联合学习分裂节点处的输入相关数据分区和叶节点处的年龄分布来处理不均匀数据。这种联合学习遵循交替策略:(1)固定叶节点,并通过反向传播优化分裂节点和 CNN 参数;(2)固定分裂节点,并通过变分边界优化叶节点。两个确定性退火过程分别引入到分裂和叶节点的学习中,以避免较差的局部最优值,并在没有初始值的情况下获得更好的树参数估计。实验结果表明,DLDLF 和 DRF 在三个年龄估计数据集上实现了最先进的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验