IEEE Trans Med Imaging. 2020 Apr;39(4):898-909. doi: 10.1109/TMI.2019.2937271. Epub 2019 Aug 23.
The segmentation of brain tissue in MRI is valuable for extracting brain structure to aid diagnosis, treatment and tracking the progression of different neurologic diseases. Medical image data are volumetric and some neural network models for medical image segmentation have addressed this using a 3D convolutional architecture. However, this volumetric spatial information has not been fully exploited to enhance the representative ability of deep networks, and these networks have not fully addressed the practical issues facing the analysis of multimodal MRI data. In this paper, we propose a spatially-weighted 3D network (SW-3D-UNet) for brain tissue segmentation of single-modality MRI, and extend it using multimodality MRI data. We validate our model on the MRBrainS13 and MALC12 datasets. This unpublished model ranked first on the leaderboard of the MRBrainS13 Challenge.
MRI 中的脑组织分割对于提取大脑结构以辅助诊断、治疗和跟踪不同神经疾病的进展非常有价值。医学图像数据是体积的,一些用于医学图像分割的神经网络模型已经使用 3D 卷积架构解决了这个问题。然而,这种体积空间信息尚未被充分利用来增强深度网络的表示能力,并且这些网络尚未充分解决分析多模态 MRI 数据所面临的实际问题。在本文中,我们提出了一种用于单模态 MRI 的脑组织分割的空间加权 3D 网络 (SW-3D-UNet),并使用多模态 MRI 数据对其进行扩展。我们在 MRBrainS13 和 MALC12 数据集上验证了我们的模型。这个未发布的模型在 MRBrainS13 挑战赛的排行榜上排名第一。