Suppr超能文献

CompScore:通过将对接打分函数组件纳入共识打分,提升基于结构的虚拟筛选性能。

CompScore: Boosting Structure-Based Virtual Screening Performance by Incorporating Docking Scoring Function Components into Consensus Scoring.

机构信息

Bio-Cheminformatics Research Group and Escuela de Ciencias Físicas y Matemáticas , Universidad de Las Americas , Quito 170504 , Ecuador.

Departamento de Ciencias Biológicas , Universidad Técnica Particular de Loja , Loja 110107 , Ecuador.

出版信息

J Chem Inf Model. 2019 Sep 23;59(9):3655-3666. doi: 10.1021/acs.jcim.9b00343. Epub 2019 Sep 6.

Abstract

Consensus scoring has become a commonly used strategy within structure-based virtual screening (VS) workflows with improved performance compared to those based in a single scoring function. However, no research has been devoted to analyze the worth of docking scoring functions components in consensus scoring. We implemented and tested a method that incorporates docking scoring functions components into the setting of high performance VS workflows. This method uses genetic algorithms for finding the combination of scoring components that maximizes the VS enrichment for any target. Our methodology was validated using a data set including ligands and decoys for 102 targets that have been widely used in VS validation studies. Results show that our approach outperforms other methods for all targets. It also boosts the initial enrichment performance of the traditional use of whole scoring functions in consensus scoring by an average of 45%. Our methodology showed to be outstandingly predictive when challenged to rescore external (previously unseen) data. Remarkably, CompScore was able not only to retain its performance after redocking with a different software, but also proved that the enrichment obtained was not artificial. CompScore is freely available at: http://bioquimio.udla.edu.ec/compscore/ .

摘要

共识评分已成为基于结构的虚拟筛选 (VS) 工作流程中常用的策略,与基于单一评分函数的方法相比,其性能得到了提高。然而,目前还没有研究致力于分析对接评分函数组件在共识评分中的价值。我们实现并测试了一种方法,该方法将对接评分函数组件纳入高性能 VS 工作流程的设置中。该方法使用遗传算法来寻找最大化任何目标 VS 富集的评分组件组合。我们的方法学使用了广泛用于 VS 验证研究的 102 个靶标配体和诱饵的数据集进行验证。结果表明,我们的方法对于所有靶标都优于其他方法。它还将共识评分中整个评分函数的传统使用的初始富集性能平均提高了 45%。当对外部(以前未见过)数据进行重新评分时,我们的方法表现出出色的预测能力。值得注意的是,CompScore 不仅能够在使用不同软件重新对接后保持其性能,还证明了获得的富集不是人为的。CompScore 可在以下网址免费获得:http://bioquimio.udla.edu.ec/compscore/。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验