Suppr超能文献

MoMo:具有统计学意义的翻译后修饰基序的发现。

MoMo: discovery of statistically significant post-translational modification motifs.

作者信息

Cheng Alice, Grant Charles E, Noble William S, Bailey Timothy L

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA, USA.

Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA.

出版信息

Bioinformatics. 2019 Aug 15;35(16):2774-2782. doi: 10.1093/bioinformatics/bty1058.

Abstract

MOTIVATION

Post-translational modifications (PTMs) of proteins are associated with many significant biological functions and can be identified in high throughput using tandem mass spectrometry. Many PTMs are associated with short sequence patterns called 'motifs' that help localize the modifying enzyme. Accordingly, many algorithms have been designed to identify these motifs from mass spectrometry data. Accurate statistical confidence estimates for discovered motifs are critically important for proper interpretation and in the design of downstream experimental validation.

RESULTS

We describe a method for assigning statistical confidence estimates to PTM motifs, and we demonstrate that this method provides accurate P-values on both simulated and real data. Our methods are implemented in MoMo, a software tool for discovering motifs among sets of PTMs that we make available as a web server and as downloadable source code. MoMo re-implements the two most widely used PTM motif discovery algorithms-motif-x and MoDL-while offering many enhancements. Relative to motif-x, MoMo offers improved statistical confidence estimates and more accurate calculation of motif scores. The MoMo web server offers more proteome databases, more input formats, larger inputs and longer running times than the motif-x web server. Finally, our study demonstrates that the confidence estimates produced by motif-x are inaccurate. This inaccuracy stems in part from the common practice of drawing 'background' peptides from an unshuffled proteome database. Our results thus suggest that many of the papers that use motif-x to find motifs may be reporting results that lack statistical support.

AVAILABILITY AND IMPLEMENTATION

The MoMo web server and source code are provided at http://meme-suite.org.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

蛋白质的翻译后修饰(PTM)与许多重要的生物学功能相关,并且可以使用串联质谱进行高通量鉴定。许多PTM与称为“基序”的短序列模式相关,这些基序有助于定位修饰酶。因此,已经设计了许多算法来从质谱数据中识别这些基序。对发现的基序进行准确的统计置信度估计对于正确解释和下游实验验证的设计至关重要。

结果

我们描述了一种为PTM基序分配统计置信度估计的方法,并证明该方法在模拟数据和真实数据上都能提供准确的P值。我们的方法在MoMo中实现,MoMo是一种用于在PTM集合中发现基序的软件工具,我们将其作为网络服务器和可下载的源代码提供。MoMo重新实现了两种最广泛使用的PTM基序发现算法——Motif-X和MoDL,同时提供了许多增强功能。相对于Motif-X,MoMo提供了改进的统计置信度估计和更准确的基序分数计算。MoMo网络服务器比Motif-X网络服务器提供更多的蛋白质组数据库、更多的输入格式、更大的输入和更长的运行时间。最后,我们的研究表明Motif-X产生的置信度估计不准确。这种不准确部分源于从未洗牌的蛋白质组数据库中提取“背景”肽的常见做法。因此,我们的结果表明,许多使用Motif-X来寻找基序的论文可能报告的结果缺乏统计支持。

可用性和实现方式

MoMo网络服务器和源代码可在http://meme-suite.org获得。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
MoMo: discovery of statistically significant post-translational modification motifs.
Bioinformatics. 2019 Aug 15;35(16):2774-2782. doi: 10.1093/bioinformatics/bty1058.
2
STREME: accurate and versatile sequence motif discovery.
Bioinformatics. 2021 Sep 29;37(18):2834-2840. doi: 10.1093/bioinformatics/btab203.
3
Non-parametric Bayesian approach to post-translational modification refinement of predictions from tandem mass spectrometry.
Bioinformatics. 2013 Apr 1;29(7):821-9. doi: 10.1093/bioinformatics/btt056. Epub 2013 Feb 17.
4
MEME SUITE: tools for motif discovery and searching.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8. doi: 10.1093/nar/gkp335. Epub 2009 May 20.
6
Biological sequence motif discovery using motif-x.
Curr Protoc Bioinformatics. 2011 Sep;Chapter 13:13.15.1-13.15.24. doi: 10.1002/0471250953.bi1315s35.
7
Computational refinement of post-translational modifications predicted from tandem mass spectrometry.
Bioinformatics. 2011 Mar 15;27(6):797-806. doi: 10.1093/bioinformatics/btr017. Epub 2011 Jan 22.
8
MMFPh: a maximal motif finder for phosphoproteomics datasets.
Bioinformatics. 2012 Jun 15;28(12):1562-70. doi: 10.1093/bioinformatics/bts195. Epub 2012 Apr 23.
9
Systematic characterization and prediction of post-translational modification cross-talk between proteins.
Bioinformatics. 2019 Aug 1;35(15):2626-2633. doi: 10.1093/bioinformatics/bty1033.
10
MEME: discovering and analyzing DNA and protein sequence motifs.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73. doi: 10.1093/nar/gkl198.

引用本文的文献

1
Comprehensive Ubiquitome Analysis of Leaves Infected with Tomato Brown Rugose Fruit Virus.
Biology (Basel). 2025 Jun 5;14(6):656. doi: 10.3390/biology14060656.
2
A Systematic Study of Lysine Succinylation in the Pathogenic Bacterium in Aquatic Animals.
Molecules. 2025 May 31;30(11):2418. doi: 10.3390/molecules30112418.
4
Tauopathy after long-term cervical lymphadenectomy.
Alzheimers Dement. 2025 Apr;21(4):e70136. doi: 10.1002/alz.70136.
5
Pupylation-Based Proximity Labeling Unravels a Comprehensive Protein and Phosphoprotein Interactome of the Arabidopsis TOR Complex.
Adv Sci (Weinh). 2025 May;12(19):e2414496. doi: 10.1002/advs.202414496. Epub 2025 Mar 24.
6
Spatiotemporal single-cell architecture of gene expression in the Caenorhabditis elegans germ cells.
Cell Discov. 2025 Mar 18;11(1):26. doi: 10.1038/s41421-025-00790-4.
7
Dynamic proteome and acetylome profiling reveals key regulators of sucrose accumulation in sugarcane.
Plant Cell Rep. 2025 Mar 17;44(4):74. doi: 10.1007/s00299-025-03449-2.
9
Dynamic global acetylation remodeling during the yeast heat shock response.
bioRxiv. 2025 Jan 10:2025.01.10.632339. doi: 10.1101/2025.01.10.632339.
10
Gas-phase fractionation DDA promotes in-depth DIA phosphoproteome analysis.
Heliyon. 2025 Jan 14;11(2):e41928. doi: 10.1016/j.heliyon.2025.e41928. eCollection 2025 Jan 30.

本文引用的文献

1
Characterization of Plasmodium falciparum Atypical Kinase PfPK7 Dependent Phosphoproteome.
J Proteome Res. 2018 Jun 1;17(6):2112-2123. doi: 10.1021/acs.jproteome.8b00062. Epub 2018 Apr 30.
2
The eukaryotic linear motif resource - 2018 update.
Nucleic Acids Res. 2018 Jan 4;46(D1):D428-D434. doi: 10.1093/nar/gkx1077.
3
Anatomy and evolution of database search engines-a central component of mass spectrometry based proteomic workflows.
Mass Spectrom Rev. 2020 May;39(3):292-306. doi: 10.1002/mas.21543. Epub 2017 Sep 13.
4
Uncovering Phosphorylation-Based Specificities through Functional Interaction Networks.
Mol Cell Proteomics. 2016 Jan;15(1):236-45. doi: 10.1074/mcp.M115.052357. Epub 2015 Nov 16.
5
Mining Conditional Phosphorylation Motifs.
IEEE/ACM Trans Comput Biol Bioinform. 2014 Sep-Oct;11(5):915-27. doi: 10.1109/TCBB.2014.2321400.
6
MMFPh: a maximal motif finder for phosphoproteomics datasets.
Bioinformatics. 2012 Jun 15;28(12):1562-70. doi: 10.1093/bioinformatics/bts195. Epub 2012 Apr 23.
8
Biological sequence motif discovery using motif-x.
Curr Protoc Bioinformatics. 2011 Sep;Chapter 13:13.15.1-13.15.24. doi: 10.1002/0471250953.bi1315s35.
9
A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
Mol Cell Proteomics. 2011 Oct;10(10):M111.013284. doi: 10.1074/mcp.M111.013284. Epub 2011 Sep 1.
10
Discovery of protein phosphorylation motifs through exploratory data analysis.
PLoS One. 2011;6(5):e20025. doi: 10.1371/journal.pone.0020025. Epub 2011 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验