Suppr超能文献

能否通过创建预防性回肠造口术更好地预测术后脱水再入院:预测模型和基于网络的风险计算器的开发和验证。

Can we better predict readmission for dehydration following creation of a diverting loop ileostomy: development and validation of a prediction model and web-based risk calculator.

机构信息

Division of Colon and Rectal Surgery, Jewish General Hospital, Montreal, QC, Canada.

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.

出版信息

Surg Endosc. 2020 Jul;34(7):3118-3125. doi: 10.1007/s00464-019-07069-2. Epub 2019 Aug 26.

Abstract

BACKGROUND

Dehydration is the most common morbidity following creation of a diverting loop ileostomy (DLI). We aimed to develop and validate a prediction model and web-based risk calculator for readmission for dehydration following DLI creation.

METHODS

After institutional review board approval, we retrospectively reviewed the American College of Surgeons-National Surgical Quality Improvement Program (ACS-NSQIP) database between 2012 and 2017. Adult patients (> 18 years) who underwent DLI with a resection for colorectal cancer, inflammatory bowel disease, or diverticulitis were identified. Patient demographics, operative and postoperative data were collected. The final prediction model, developed in 60% of the cohort (training set) and which modeled the 30-day cumulative incidence of readmission for dehydration, was selected using highest area under the receiver operating curve (AUC) criterion. Model calibration was assessed with the Hosmer-Lemeshow goodness-of-fit test. The model was then assessed in validation and test sets, using 20% of the cohort for each.

RESULTS

Of 25,638 patients in the ACS-NSQIP database who met inclusion criteria, 15,222 patients were randomly selected for the training set. The incidence of readmission for dehydration in this cohort was 2.1%. The final model with the highest AUC retained 12 candidate variables: age, sex, smoking status, diabetes, hypertension, American Society of Anesthesiologists score, type of admission, underlying diagnosis, procedure performed, operative time, index admission length of stay, and major morbidity. The model demonstrated good discrimination (AUC 0.76, 95% CI 0.74-0.79) and the Hosmer-Lemeshow goodness-of-fit test confirmed good calibration (p = 0.50). Five-thousand and seventy-three patients were available for the validation and test sets, respectively, and the model remained strong in both the validation and test sets (AUCs of 0.73 and 0.73, respectively). The prediction model was then converted into a web-based risk calculator.

CONCLUSIONS

A prediction model and web-based risk calculator for readmission for dehydration after DLI creation was developed and validated, demonstrating good predictive capabilities.

摘要

背景

在创建转流回肠造口术(DLI)后,脱水是最常见的并发症。我们旨在开发和验证一种预测模型和基于网络的风险计算器,用于预测 DLI 术后因脱水而再次入院的风险。

方法

在获得机构审查委员会批准后,我们回顾性地分析了 2012 年至 2017 年期间美国外科医师学会-国家外科质量改进计划(ACS-NSQIP)数据库。纳入接受 DLI 联合结直肠肿瘤、炎症性肠病或憩室炎切除术的成年患者(>18 岁)。收集患者的人口统计学、手术和术后数据。最终预测模型是在 60%的队列(训练集)中建立的,用于模拟 30 天内因脱水而再次入院的累积发生率,并根据接受者操作特征曲线(ROC)下面积(AUC)的最高标准进行选择。采用 Hosmer-Lemeshow 拟合优度检验评估模型校准度。然后在验证集和测试集中评估模型,每个数据集使用 20%的队列。

结果

在 ACS-NSQIP 数据库中,符合纳入标准的 25638 名患者中,有 15222 名患者被随机选择进入训练集。该队列中因脱水而再次入院的发生率为 2.1%。具有最高 AUC 的最终模型保留了 12 个候选变量:年龄、性别、吸烟状况、糖尿病、高血压、美国麻醉医师协会评分、入院类型、基础诊断、手术类型、手术时间、入院时的住院时间、以及主要发病率。该模型具有良好的区分度(AUC 0.76,95%CI 0.74-0.79),Hosmer-Lemeshow 拟合优度检验证实其校准良好(p=0.50)。另外有 5073 名患者可用于验证集和测试集,模型在验证集和测试集均表现良好(AUC 分别为 0.73 和 0.73)。然后,该预测模型被转化为一个基于网络的风险计算器。

结论

我们开发并验证了一种预测模型和基于网络的风险计算器,用于预测 DLI 术后因脱水而再次入院的风险,该模型具有良好的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验