Peiris Chandramalika R, Vogel Yan B, Le Brun Anton P, Aragonès Albert C, Coote Michelle L, Díez-Pérez Ismael, Ciampi Simone, Darwish Nadim
School of Molecular and Life Sciences, Curtin Institute of Functional molecules and Interfaces , Curtin University , Bentley , Western Australia 6102 , Australia.
Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organization (ANSTO) , Lucas Heights , New South Wales 2234 , Australia.
J Am Chem Soc. 2019 Sep 18;141(37):14788-14797. doi: 10.1021/jacs.9b07125. Epub 2019 Sep 5.
Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal-single-molecule-semiconductor junctions between silicon and gold source and drain, electrodes. Au-C and Si-C molecule-electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30-400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current-voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal-semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current rectifier in the absence of a molecular bridge to an ohmic contact when a single molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.
在此,我们报告了两端以重氮盐部分终止的分子膜,其能够在开路条件下通过自由基反应实现金电极与硅电极之间的单分子接触。我们表明,膜接枝的动力学取决于晶体面,在〈111〉面上比在〈100〉面上更有利,这一发现增加了器件制造过程中对表面化学的控制。通过在硅和金源极与漏极电极之间形成金属 - 单分子 - 半导体结,利用扫描隧道显微镜断结方法证明了这种自发化学在单分子电子学中的影响。金 - 碳和硅 - 碳分子 - 电极接触形成了机械稳定的单分子线,在室温下的平均寿命为1.1秒,比使用硫醇和胺接触基团在金电极之间形成的传统分子结所报道的寿命高30 - 400%。这种高稳定性使得能够在分子结的寿命期间测量电流 - 电压特性。我们表明,当单分子桥接结中的间隙时,可以控制金属 - 半导体结固有的电流整流。当单分子与硅电极和金电极都共价键合时,该系统从没有分子桥时的电流整流器变为欧姆接触。这项研究为单分子电子学和硅电子学领域的融合铺平了道路。