Suppr超能文献

用于通过石墨-分子接触实现室温电荷传输的稳定锚定化学。

Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts.

作者信息

Rudnev Alexander V, Kaliginedi Veerabhadrarao, Droghetti Andrea, Ozawa Hiroaki, Kuzume Akiyoshi, Haga Masa-Aki, Broekmann Peter, Rungger Ivan

机构信息

Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.

出版信息

Sci Adv. 2017 Jun 9;3(6):e1602297. doi: 10.1126/sciadv.1602297. eCollection 2017 Jun.

Abstract

An open challenge for single-molecule electronics is to find stable contacts at room temperature with a well-defined conductance. Common coinage metal electrodes pose fabrication and operational problems due to the high mobility of the surface atoms. We demonstrate how molecules covalently grafted onto mechanically robust graphite/graphene substrates overcome these limitations. To this aim, we explore the effect of the anchoring group chemistry on the charge transport properties of graphite-molecule contacts by means of the scanning tunneling microscopy break-junction technique and ab initio simulations. Molecules adsorbed on graphite only via van der Waals interactions have a conductance that decreases exponentially upon stretching the junctions, whereas the molecules bonded covalently to graphite have a single well-defined conductance and yield contacts of unprecedented stability at room temperature. Our results demonstrate a strong bias dependence of the single-molecule conductance, which varies over more than one order of magnitude even at low bias voltages, and show an opposite rectification behavior for covalent and noncovalent contacts. We demonstrate that this bias-dependent conductance and opposite rectification behavior is due to a novel effect caused by the nonconstant, highly dispersive density of states of graphite around the Fermi energy and that the direction of rectification is governed by the detailed nature of the molecule/graphite contact. Combined with the prospect of new functionalities due to a strongly bias-dependent conductance, these covalent contacts are ideal candidates for next-generation molecular electronic devices.

摘要

单分子电子学面临的一个公开挑战是在室温下找到具有明确电导的稳定接触。常见的货币金属电极由于表面原子的高迁移率而存在制造和操作问题。我们展示了共价接枝到机械坚固的石墨/石墨烯基底上的分子如何克服这些限制。为此,我们通过扫描隧道显微镜断接技术和从头算模拟,探索了锚定基团化学对石墨 - 分子接触电荷传输特性的影响。仅通过范德华相互作用吸附在石墨上的分子,其电导在拉伸结时呈指数下降,而与石墨共价键合的分子具有单一明确的电导,并在室温下产生前所未有的稳定性接触。我们的结果表明单分子电导强烈依赖于偏压,即使在低偏压下其变化也超过一个数量级,并且共价和非共价接触表现出相反的整流行为。我们证明这种偏压依赖的电导和相反的整流行为是由费米能级附近石墨态密度的非恒定、高度分散特性引起的一种新效应导致的,并且整流方向由分子/石墨接触的详细性质决定。结合由于强烈偏压依赖电导而产生新功能的前景,这些共价接触是下一代分子电子器件的理想候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d3/5466367/59464a475898/1602297-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验