Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Osaka, Japan.
Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871 Osaka, Japan.
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18498-18506. doi: 10.1073/pnas.1908736116. Epub 2019 Aug 27.
CRISPR/Cas9-mediated genome editing technology enables researchers to efficiently generate and analyze genetically modified animals. We have taken advantage of this game-changing technology to uncover essential factors for fertility. In this study, we generated knockouts (KOs) of multiple male reproductive organ-specific genes and performed phenotypic screening of these null mutant mice to attempt to identify proteins essential for male fertility. We focused on making large deletions (dels) within 2 gene clusters encoding cystatin (CST) and prostate and testis expressed (PATE) proteins and individual gene mutations in 2 other gene families encoding glycerophosphodiester phosphodiesterase domain (GDPD) containing and lymphocyte antigen 6 (Ly6)/Plaur domain (LYPD) containing proteins. These gene families were chosen because many of the genes demonstrate male reproductive tract-specific expression. Although and mutant mice were fertile, disruptions of and gene clusters and resulted in male sterility or severe fertility defects secondary to impaired sperm migration through the oviduct. While absence of the epididymal protein families CST and PATE affect the localization of the sperm membrane protein A disintegrin and metallopeptidase domain 3 (ADAM3), the sperm acrosomal membrane protein LYPD4 regulates sperm fertilizing ability via an ADAM3-independent pathway. Thus, use of CRISPR/Cas9 technologies has allowed us to quickly rule in and rule out proteins required for male fertility and expand our list of male-specific proteins that function in sperm migration through the oviduct.
CRISPR/Cas9 介导的基因组编辑技术使研究人员能够有效地生成和分析遗传修饰动物。我们利用这项改变游戏规则的技术来揭示生育所必需的因素。在这项研究中,我们生成了多个雄性生殖器官特异性基因的敲除(KO),并对这些 null 突变小鼠进行了表型筛选,试图鉴定雄性生育所必需的蛋白质。我们专注于在编码半胱氨酸蛋白酶抑制剂(CST)和前列腺和睾丸表达(PATE)蛋白的 2 个基因簇内进行大片段缺失(dels),以及在编码甘油磷酸二酯磷酸二酯酶结构域(GDPD)包含和淋巴细胞抗原 6(Ly6)/Plaur 结构域(LYPD)包含蛋白的 2 个其他基因家族中进行单个基因突变。这些基因家族被选中是因为许多基因表现出雄性生殖道特异性表达。虽然 和 突变小鼠具有生育能力,但 和 基因簇以及 的破坏导致雄性不育或严重的生育缺陷,这是由于精子通过输卵管的迁移受损所致。虽然附睾蛋白家族 CST 和 PATE 的缺失会影响精子膜蛋白 A 型分解素和金属蛋白酶结构域 3(ADAM3)的定位,但精子顶体膜蛋白 LYPD4 通过 ADAM3 独立途径调节精子受精能力。因此,CRISPR/Cas9 技术的使用使我们能够快速确定和排除雄性生育所必需的蛋白质,并扩展了我们在精子通过输卵管迁移中起作用的雄性特异性蛋白质列表。