Suppr超能文献

染料修饰的 DNA 组装等离子体纳米立方阵列的可调谐荧光。

Tunable Fluorescence from Dye-Modified DNA-Assembled Plasmonic Nanocube Arrays.

机构信息

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.

Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.

出版信息

Adv Mater. 2019 Oct;31(41):e1904448. doi: 10.1002/adma.201904448. Epub 2019 Aug 28.

Abstract

Colloidal crystal engineering with DNA on template-confined surfaces is used to prepare arrays of nanocube-based plasmonic antennas and deliberately place dyes with sub-nm precision into their hotspots, on the DNA bonds that confine the cubes to the underlying gold substrate. This combined top-down and bottom-up approach provides independent control over both the plasmonic gap and photonic lattice modes of the surface-confined particle assemblies and allows for the tuning of the interactions between the excited dyes and plasmonically active antennas. Furthermore, the gap mode of the antennas can be modified in situ by utilizing the solvent-dependent structure of the DNA bonds. This is studied by placing two dyes, with different emission wavelengths, under the nanocubes and recording their solvent-dependent emission. It is shown that dye emission not only depends upon the in-plane structure of the antennas but also the size of the gap, which is regulated with solvent. Importantly, this approach allows for the systematic understanding of the relationship between nanoscale architecture and plasmonically coupled dye emission, and points toward the use of colloidal crystal engineering with DNA to create stimuli responsive architectures, which can find use in chemical sensing and tunable light sources.

摘要

在模板受限表面上使用 DNA 进行胶体晶体工程,用于制备基于纳米立方的等离子体天线阵列,并故意将染料以亚纳米精度放置在其热点中,即在将立方体制限在基底金上的 DNA 键上。这种自上而下和自下而上的组合方法提供了对表面受限粒子组装的等离子体间隙和光子晶格模式的独立控制,并允许调节激发染料和等离子体活性天线之间的相互作用。此外,通过利用 DNA 键的溶剂依赖性结构,可以原位修改天线的间隙模式。通过将两个具有不同发射波长的染料放置在纳米立方下面,并记录它们的溶剂依赖性发射来研究这一点。结果表明,染料发射不仅取决于天线的面内结构,还取决于间隙的大小,而间隙大小可以通过溶剂进行调节。重要的是,这种方法允许系统地理解纳米结构与等离子体耦合染料发射之间的关系,并指出使用 DNA 胶体晶体工程来创建对刺激有响应的结构,这些结构可用于化学传感和可调光源。

相似文献

3
Directional emission from dye-functionalized plasmonic DNA superlattice microcavities.染料功能化等离子体DNA超晶格微腔的定向发射
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):457-461. doi: 10.1073/pnas.1619802114. Epub 2017 Jan 4.
4
Directing fluorescence with plasmonic and photonic structures.利用等离子体和光子结构引导荧光
Acc Chem Res. 2015 Aug 18;48(8):2171-80. doi: 10.1021/acs.accounts.5b00100. Epub 2015 Jul 13.

本文引用的文献

1
Modification of single molecule fluorescence near metallic nanostructures.金属纳米结构附近单分子荧光的修饰
Laser Photon Rev. 2009 Feb;3(1-2):221-232. doi: 10.1002/lpor.200810035. Epub 2009 Feb 19.
3
Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.表面等离激元晶格共振:性质与应用综述
Chem Rev. 2018 Jun 27;118(12):5912-5951. doi: 10.1021/acs.chemrev.8b00243. Epub 2018 Jun 4.
9
Diamond family of nanoparticle superlattices.纳米颗粒超晶格的金刚石家族。
Science. 2016 Feb 5;351(6273):582-6. doi: 10.1126/science.aad2080.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验