Conklin Daniel J, Ogunwale Mumiye A, Chen Yizheng, Theis Whitney S, Nantz Michael H, Fu Xiao-An, Chen Lung-Chi, Riggs Daniel W, Lorkiewicz Pawel, Bhatnagar Aruni, Srivastava Sanjay
American Heart Association - Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40292.
Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292.
Aerosol Sci Technol. 2018;52(11):1219-1232. doi: 10.1080/02786826.2018.1500013. Epub 2018 Aug 23.
Electronic cigarettes (e-cigarette) have emerged as a popular electronic nicotine delivery system (ENDS) in the last decade. Despite the absence of combustion products and toxins such as carbon monoxide (CO) and tobacco-specific nitrosamines (TSNA), carbonyls including short-chain, toxic aldehydes have been detected in e-cigarette-derived aerosols up to levels found in tobacco smoke. Given the health concerns regarding exposures to toxic aldehydes, understanding both aldehyde generation in e-cigarette and e-cigarette exposure is critical. Thus, we measured aldehydes generated in aerosols derived from propylene glycol (PG):vegetable glycerin (VG) mixtures and from commercial e-liquids with flavorants using a state-of-the-art carbonyl trap and mass spectrometry. To track e-cigarette exposure in mice, we measured urinary metabolites of 4 aldehydes using ULPC-MS/MS or GC-MS. Aldehyde levels, regardless of abundance (saturated: formaldehyde, acetaldehyde >> unsaturated: acrolein, crotonaldehyde), were dependent on the PG:VG ratio and the presence of flavorants. The metabolites of 3 aldehydes - formate, acetate and 3-hydroxypropyl mercapturic acid (3-HPMA; acrolein metabolite) -- were increased in urine after e-cigarette aerosol and mainstream cigarette smoke (MCS) exposures, but the crotonaldehyde metabolite (3-hydroxy-1-methylpropylmercapturic acid, HPMMA) was increased only after MCS exposure. Interestingly, exposure to menthol-flavored e-cigarette aerosol increased the levels of urinary 3-HPMA and sum of nicotine exposure (nicotine, cotinine, -3'-hydroxycotinine) relative to exposure to a Classic Tobacco-flavored e-cigarette aerosol. Comparing these findings with aerosols of other ENDS and by measuring aldehyde-derived metabolites in human urine following exposure to e-cigarette aerosols will further our understanding of the relationship between ENDS use, aldehyde exposure and health risk.
在过去十年中,电子烟已成为一种流行的电子尼古丁输送系统(ENDS)。尽管电子烟没有燃烧产物以及一氧化碳(CO)和烟草特有亚硝胺(TSNA)等毒素,但在电子烟产生的气溶胶中已检测到羰基化合物,包括短链有毒醛类,其含量高达烟草烟雾中的水平。鉴于对接触有毒醛类的健康担忧,了解电子烟中醛类的生成以及电子烟暴露情况至关重要。因此,我们使用先进的羰基捕集器和质谱仪,测量了由丙二醇(PG):蔬菜甘油(VG)混合物以及添加调味剂的商用电子烟液产生的气溶胶中的醛类。为了追踪小鼠的电子烟暴露情况,我们使用超高效液相色谱-串联质谱(ULPC-MS/MS)或气相色谱-质谱(GC-MS)测量了4种醛类的尿液代谢物。醛类水平,无论其丰度如何(饱和醛:甲醛、乙醛 >> 不饱和醛:丙烯醛、巴豆醛),都取决于PG:VG比例和调味剂的存在。在接触电子烟气溶胶和主流香烟烟雾(MCS)后,尿液中3种醛类的代谢物——甲酸盐、乙酸盐和3-羟丙基巯基尿酸(3-HPMA;丙烯醛代谢物)——有所增加,但巴豆醛代谢物(3-羟基-1-甲基丙基巯基尿酸,HPMMA)仅在接触MCS后增加。有趣的是,相对于接触经典烟草味电子烟气溶胶,接触薄荷醇味电子烟气溶胶会增加尿液中3-HPMA的水平以及尼古丁暴露总量(尼古丁、可替宁、-3'-羟基可替宁)。将这些发现与其他ENDS的气溶胶进行比较,并通过测量接触电子烟气溶胶后人体尿液中醛类衍生代谢物,将有助于我们进一步了解ENDS使用、醛类暴露与健康风险之间的关系。