Suppr超能文献

将分子途径与大规模计算建模相结合以评估阿尔茨海默病的候选疾病机制和药效学

Linking Molecular Pathways and Large-Scale Computational Modeling to Assess Candidate Disease Mechanisms and Pharmacodynamics in Alzheimer's Disease.

作者信息

Stefanovski Leon, Triebkorn Paul, Spiegler Andreas, Diaz-Cortes Margarita-Arimatea, Solodkin Ana, Jirsa Viktor, McIntosh Anthony Randal, Ritter Petra

机构信息

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany.

Berlin Institute of Health, Berlin, Germany.

出版信息

Front Comput Neurosci. 2019 Aug 13;13:54. doi: 10.3389/fncom.2019.00054. eCollection 2019.

Abstract

While the prevalence of neurodegenerative diseases associated with dementia such as Alzheimer's disease (AD) increases, our knowledge on the underlying mechanisms, outcome predictors, or therapeutic targets is limited. In this work, we demonstrate how computational multi-scale brain modeling links phenomena of different scales and therefore identifies potential disease mechanisms leading the way to improved diagnostics and treatment. The Virtual Brain (TVB; thevirtualbrain.org) neuroinformatics platform allows standardized large-scale structural connectivity-based simulations of whole brain dynamics. We provide proof of concept for a novel approach that quantitatively links the effects of altered molecular pathways onto neuronal population dynamics. As a novelty, we connect chemical compounds measured with positron emission tomography (PET) with neural function in TVB addressing the phenomenon of hyperexcitability in AD related to the protein amyloid beta (Abeta). We construct personalized virtual brains based on an averaged healthy connectome and individual PET derived distributions of Abeta in patients with mild cognitive impairment (MCI, = 8) and Alzheimer's Disease (AD, = 10) and in age-matched healthy controls (HC, = 15) using data from ADNI-3 data base (http://adni.loni.usc.edu). In the personalized virtual brains, individual Abeta burden modulates regional Excitation-Inhibition balance, leading to local hyperexcitation with high Abeta loads. We analyze simulated regional neural activity and electroencephalograms (EEG). Known empirical alterations of EEG in patients with AD compared to HCs were reproduced by simulations. The virtual AD group showed slower frequencies in simulated local field potentials and EEG compared to MCI and HC groups. The heterogeneity of the Abeta load is crucial for the virtual EEG slowing which is absent for control models with homogeneous Abeta distributions. Slowing phenomena primarily affect the network hubs, independent of the spatial distribution of Abeta. Modeling the N-methyl-D-aspartate (NMDA) receptor antagonism of memantine in local population models, reveals potential functional reversibility of the observed large-scale alterations (reflected by EEG slowing) in virtual AD brains. We demonstrate how TVB enables the simulation of systems effects caused by pathogenetic molecular candidate mechanisms in human virtual brains.

摘要

随着与痴呆症相关的神经退行性疾病(如阿尔茨海默病,AD)的患病率不断上升,我们对其潜在机制、预后预测指标或治疗靶点的了解仍然有限。在这项工作中,我们展示了计算多尺度脑模型如何将不同尺度的现象联系起来,从而识别出潜在的疾病机制,为改进诊断和治疗指明方向。虚拟大脑(TVB;thevirtualbrain.org)神经信息学平台允许基于标准化大规模结构连通性对全脑动力学进行模拟。我们为一种将分子通路改变对神经元群体动力学的影响进行定量关联的新方法提供了概念验证。作为一项创新,我们将正电子发射断层扫描(PET)测量的化合物与TVB中的神经功能联系起来,以解决与淀粉样蛋白β(Aβ)相关的AD中的过度兴奋现象。我们使用来自阿尔茨海默病神经成像计划-3(ADNI-3)数据库(http://adni.loni.usc.edu)的数据,基于平均健康连接组以及轻度认知障碍(MCI,n = 8)、阿尔茨海默病(AD,n = 10)患者和年龄匹配的健康对照(HC,n = 15)个体PET衍生的Aβ分布构建个性化虚拟大脑。在个性化虚拟大脑中,个体Aβ负荷调节区域兴奋-抑制平衡,导致高Aβ负荷时局部过度兴奋。我们分析了模拟的区域神经活动和脑电图(EEG)。模拟重现了AD患者与HC相比已知的EEG经验性改变。与MCI和HC组相比,虚拟AD组在模拟局部场电位和EEG中显示出较慢的频率。Aβ负荷的异质性对于虚拟EEG减慢至关重要,而Aβ分布均匀的对照模型则不存在这种情况。减慢现象主要影响网络枢纽,与Aβ的空间分布无关。在局部群体模型中对美金刚的N-甲基-D-天冬氨酸(NMDA)受体拮抗作用进行建模,揭示了虚拟AD大脑中观察到的大规模改变(以EEG减慢为反映)的潜在功能可逆性。我们展示了TVB如何在人类虚拟大脑中模拟致病分子候选机制引起的系统效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ee5/6700386/46e7032503a5/fncom-13-00054-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验