Suppr超能文献

脑模拟增强了基于机器学习的痴呆症分类。

Brain simulation augments machine-learning-based classification of dementia.

作者信息

Triebkorn Paul, Stefanovski Leon, Dhindsa Kiret, Diaz-Cortes Margarita-Arimatea, Bey Patrik, Bülau Konstantin, Pai Roopa, Spiegler Andreas, Solodkin Ana, Jirsa Viktor, McIntosh Anthony Randal, Ritter Petra

机构信息

Berlin Institute of Health at Charité - Universitätsmedizin Berlin Berlin Germany.

Department of Neurology with Experimental Neurology Brain Simulation Section, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany.

出版信息

Alzheimers Dement (N Y). 2022 May 15;8(1):e12303. doi: 10.1002/trc2.12303. eCollection 2022.

Abstract

INTRODUCTION

Computational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi-modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD).

METHODS

We enhance large-scale whole-brain simulation in TVB with a cause-and-effect model linking local amyloid beta (Aβ) positron emission tomography (PET) with altered excitability. We use PET and magnetic resonance imaging (MRI) data from 33 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI3) combined with frequency compositions of TVB-simulated local field potentials (LFP) for ML classification.

RESULTS

The combination of empirical neuroimaging features and simulated LFPs significantly outperformed the classification accuracy of empirical data alone by about 10% (weighted F1-score empirical 64.34% vs. combined 74.28%). Informative features showed high biological plausibility regarding the AD-typical spatial distribution.

DISCUSSION

The cause-and-effect implementation of local hyperexcitation caused by Aβ can improve the ML-driven classification of AD and demonstrates TVB's ability to decode information in empirical data using connectivity-based brain simulation.

摘要

引言

使用虚拟大脑(TVB)模拟平台进行的计算脑网络建模与机器学习(ML)和多模态神经成像协同作用,以揭示阿尔茨海默病(AD)的发病机制并改善诊断。

方法

我们通过将局部淀粉样β蛋白(Aβ)正电子发射断层扫描(PET)与兴奋性改变相联系的因果模型,增强了TVB中的大规模全脑模拟。我们使用来自阿尔茨海默病神经成像计划(ADNI3)的33名参与者的PET和磁共振成像(MRI)数据,结合TVB模拟的局部场电位(LFP)的频率成分进行ML分类。

结果

经验性神经成像特征与模拟LFP的组合显著优于仅使用经验性数据的分类准确率,提高了约10%(加权F1分数:经验性数据为64.34%,组合数据为74.28%)。信息性特征在AD典型空间分布方面显示出较高的生物学合理性。

讨论

由Aβ引起的局部兴奋的因果实现可以改善ML驱动的AD分类,并证明了TVB使用基于连通性的脑模拟对经验性数据中的信息进行解码的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0de6/9107774/af9c2c398ae2/TRC2-8-e12303-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验